餘數定理(Polynomial remainder theorem)是指一個多項式f(x) 除以一個線性多項式(x-a)的餘數是 f(a)。若f(a)=0,則(x-a)為多項式f(x)的因式。例如,(5x3+4x2-12x+1)/(x-3) 的餘式是 5·33+4·32-12·3+1=136。
基本介紹
- 中文名:餘數定理
- 外文名:Remainder Theorem
- 學科:數學
- 屬性:定理
- 定理內容:多項式f(x)除以x-a的餘數是f(a)
- 用於:求餘數;因式分解
餘數定理
![](/img/0/53b/1d26a8511e94832910ab5f66f6ae.jpg)
證明
![](/img/1/798/53761ab88618a0db6bfb4f508b51.jpg)
![](/img/6/038/e3fb58f8d109eed99e70145a5a80.jpg)
![](/img/7/4a7/aeeda76076ec5ed620a29cc83e41.jpg)
![](/img/5/b15/35bac7a8c4a4a747507273845075.jpg)
![](/img/d/580/594dbc811abedd3d779fb4856afb.jpg)
![](/img/c/8d9/a579af8b6520e40b004439e8d87d.jpg)
![](/img/f/840/511d89dc9299a8a2b9bee277c3b5.jpg)
![](/img/1/798/53761ab88618a0db6bfb4f508b51.jpg)
![](/img/6/038/e3fb58f8d109eed99e70145a5a80.jpg)
![](/img/4/d05/c9454708056fceea220c482df31c.jpg)
![](/img/c/bca/344345a92ae16add11f8f1a47fd3.jpg)
推廣形式
![](/img/b/c94/fe32a02ba2437dfd05a8f4499653.jpg)
![](/img/8/4c6/a3972402903c1a87a1a1b3bd36eb.jpg)
![](/img/6/64e/a357fcc55edbe52354d2f7426aee.jpg)
![](/img/9/19d/f88209b15faf95d0e1267c3b88ad.jpg)
![](/img/2/508/191899c7abd344e61d37ee9986f4.jpg)
例題
一次項係數不為1
![](/img/7/a9d/f400979b48cc88e143c84d1ee41f.jpg)
![](/img/8/15c/8df339e147a03ef86de28855b688.jpg)
![](/img/7/d6b/db5209c716099fcf6dbb924b46c5.jpg)
![](/img/4/210/18a9b2ce76b1676dfb5bde8a5ac8.jpg)
![](/img/3/81b/7513139c0e7e6207e64566854e7b.jpg)
除式次數大於1
![](/img/1/125/8bcfc8a20694b79e294726a5da9b.jpg)
![](/img/c/690/256ae0a6da8d4faa256e74f21b96.jpg)
![](/img/c/369/e8a34ffb2af209ee82b5029d440c.jpg)
![](/img/a/42f/4019f6b51babbc27b9566008afbe.jpg)
![](/img/5/291/44cd97f3be2a4182baeb4426d2ce.jpg)
![](/img/8/3f1/b1a1e6945ea5c476f4b2126464c4.jpg)
![](/img/9/bb0/8efdd1d9d370acbde7b214aa5428.jpg)
![](/img/9/277/0371ee1856c658af479bc6e3767b.jpg)
![](/img/b/3a1/e4c6a4a86c644a33278e65d5b1e9.jpg)
![](/img/9/daa/35d0d87c43a8a20779d2ad91c1f4.jpg)
![](/img/9/a13/04e08632e68264974542544344dd.jpg)
![](/img/d/f8a/1d591439af0c7b11b9db3222177a.jpg)
![](/img/9/7c0/3f67d49b216a5fa9420429043acc.jpg)
![](/img/a/449/4bca8b0e973c0faf6c6f25881615.jpg)
![](/img/1/bcb/257f908039bca84a99a1cf1c3f1f.jpg)
![](/img/6/f34/53420ba535146efc2801892692d2.jpg)
![](/img/f/dba/a3b65f12bccb64eeecbbb0a0e46c.jpg)
![](/img/0/720/999782454376d4ce3dd76b52b921.jpg)
![](/img/b/257/76bda3d240bba0184004e5f89ed9.jpg)
![](/img/b/409/b8bdd4ebe61f5e2d5b40b2153030.jpg)
![](/img/e/30b/1c05d2d1dea3f00a706e7fc4403d.jpg)
![](/img/0/e9c/d1d3b4b683953b4d8c2ca144f915.jpg)
因式分解
![](/img/0/db2/8ae0d0a488c7bdf005dcbf13ae9b.jpg)
![](/img/4/aa8/eed23e8773c7fda820c2f8225ed1.jpg)
![](/img/4/0c3/fe27bf6499801a5f975ccbfedcdf.jpg)
![](/img/4/afb/02bb6233331468a6b1b6b1f62494.jpg)
![](/img/2/2dd/5b76f8afad9cf524c57e2b9964d5.jpg)
![](/img/4/0c3/fe27bf6499801a5f975ccbfedcdf.jpg)
![](/img/4/9f1/6e69f5445e584720ef6644f43009.jpg)
![](/img/3/7ad/4ee9ac9698d54a35a6208c1579a6.jpg)
![](/img/4/4a1/ba42836aaba83d499f9c3918617d.jpg)
![](/img/6/2ce/7847b95d79b973b3fa6019b9c3f3.jpg)