靜力梁函式在結構振動分析中的套用

《Applications of Static Beam Functions in Vibration Analysis of Structures(靜力梁函式在結構振動分析中的套用)》以著名的結構力學分析方法——李茲法為基礎,創造性地提出了以靜力梁函式作為基函式,研究梁、板結構的動力學特性,重點分析變截面和變厚度、內部支撐以及邊界條件對梁、板結構振動特性的影響。全書共23章,第1章介紹李茲法的發展史與存在的問題;第2章至第6章研究各種邊界和內部支撐條件下變截面歐拉-伯努利梁和鐵摩辛柯梁的振動特性;第7章至第11章研究各種邊界和線支條件下等厚度基爾霍夫薄板的振動特性;第12章至第14章研究線支和點支等厚度複合材料薄板的振動特性;第15章和第16章研究變厚度基爾霍夫薄板的振動特性;第17章至第20章研究等厚度和變厚度米德林中厚板的振動特性;第21章和第22章研究線支和點支等厚度複合材料厚板的振動特性;第23章研究矩形儲液罐的流-固耦合振動特性。 《Applications of Static Beam Functions in Vibration Analysis of Structures(靜力梁函式在結構振動分析中的套用)》可供航空航天、機械、土木和力學等方面的科研工作者、工程設計人員、大專院校有關專業教師和研究生使用。

基本介紹

  • 書名:靜力梁函式在結構振動分析中的套用
  • 作者:周叮
  • 出版日期:2013年6月1日
  • 語種:英語, 簡體中文
  • ISBN:7030377877
  • 外文名:Applications of Static Beam Functions in Vibration Analysis of Structures
  • 出版社:科學出版社
  • 頁數:384頁
  • 開本:5
基本介紹,內容簡介,作者簡介,圖書目錄,

基本介紹

內容簡介

《靜力梁函式在結構振動分析中的套用(英文版)》可供航空航天、機械、土木和力學等方面的科研工作者、工程設計人員、大專院校有關專業教師和研究生使用。

作者簡介

周叮 南京工業大學特聘教授,南京工業大學、南京理工大學博士生導師。1957年5月20日生於南京。1978年2月至1985年2月就讀於清華大學工程力學系,先後獲工學學士和工學碩士學位,1985年3月進入南京理工大學工作,1995年5月任教授,1996年6月至2003年7月任香港大學土木工程系研究員,並獲香港大學博士學位,2004年8月至2006年7月在英國曼切斯特大學機械、航空與土木學院從事博士後研究工作,2006年8月回國。
已發表論文200多篇。其中SCI收錄80多篇,El收錄50多篇。擔任20多個知名國際學術期刊的長期審稿人。國際期刊編委。現任江蘇省力學學會常務理事,國際交流合作部主任。主持國家自然科學基金和江蘇省高校自然科學研究計畫重大項目,參加國家973計畫項目的研究工作。研究方向包括:結構動力學,彈性力學,流一固耦合作用,複合材料力學,地基一土壤相互作用,人一結構相互作用。力學中的計算方法。結構振動控制,失重液體動力學等。研究成果獲得過省、部科技進步獎。

圖書目錄

Preface
Chapter 1 Introduction
Chapter 2 Vibration Analysis of Tapered Euler-Bernoulli Beams
2.1 Introduction
2.2 The Rayleigh-Ritz Method for the Tapered Beams
2.3 A New Set of Admissible Functions
2.3.1 The coefficients for a truncated beam
2.3.2 The coefficients for a sharply ended beam
2.3.3 The tapered beam with rigid body motion
2.4 Convergency and Comparison Studies
2.4.1 Convergency study
2.4.2 Optimum expanding point of Taylor series
2.5 Numerical Results
2.6 Concluding Remarks
Chapter 3 Vibration Analysis of Tapered Euler-Bernoulli Beams with Intermediate Supports
3.1 Introduction
3.2 The Rayleigh-Ritz Method for Tapered Beams with Intermediate Supports
3.3 A Set of Static Tapered Beam Functions
3.3.1 The truncated beam
3.3.2 The sharply ended beam
3.3.3 The tapered beam with motions of rigid body
3.4 Numerical Examples
3.5 Concluding Remarks
Chapter 4 Vibration Analysis of Multi-span Timoshenke Beams
4.1 Introduction
4.2 Eigenfrequency Equation
4.3 Static Timoshenko Beam Functions
4.4 Convergence and Comparison Studies
4.5 Numerical Examples
4.6 Concluding Remarks
Chapter 5 Vibration Analysis of Tapered Timoshenke Beams
5.1 Introduction
5.2 Eigenfrequency Equation of Tapered Beam
5.3 The Static Timoshenko Beam Functions (STBF)
5.3.1 Truncated beam
5.3.2 Sharply ended beam
5.4 Convergence and Comparison Study
5.5 Numerical Results
5.6 Conclusions
Chapter 6 Estimation of Dynamic Characteristics of a Spring-Mass-Beam System
6.1 Introduction
6.2 Governing Differential Equations
6.3 Galerkin Solutions
6.4 Basic Characteristics of Solutions
6.5 Static Beam Functions
6.6 Determination of Factors
6.7 An Example
6.8 Characteristics of Solutions
6.9 Conclusions
Chapter 7 Vibration Analysis of Kirchhoff Rectangular Plates
Part Ⅰ Using Static Beam Functions under Point Loads
7.1 Introduction
7.2 Sets of Static Beam Functions under Point Loads
7.3 Rayleigh-Ritz Solution for Rectangular Plates
7.4 Numerical Results
7.5 Concluding Remarks
Part Ⅱ Using Static Beam Functions under Sinusoidal Loads
7.1 Introduction
7.2 The Set of Static Beam Functions
7.3 The RayleighoRitz Approach
7.4 Numerical Results
7.5 Concluding Remarks
Chapter 8 Vibration Analysis of Kirchhoff Rectangular Plates with Elastic Edge Constraints
8.1 Introduction
8.2 The Set of Static Beam Functions
8.3 The Rayleigh-Ritz Solution
8.4 Numerical Examples
8.5 Discussion and Conclusions
Chapter 9 Vibration Analysis of Kirchhoff Rectangular Plates with Intermediate Line-supports
Part Ⅰ Using a Combination of Vibrating Beam Functions and Polynomials
9.1 Introduction
9.2 Mathematical Model
9.3 Numerical Examples
9.4 Concluding Remarks
Part Ⅱ Using the Static Beam Functions for Beam with Point-supports
9.1 Introduction
9.2 A New Set of Admissible Functions
9.3 Eigenfrequency Equation
9.4 Some Numerical Results
9.5 Conclusions
Chapter 10 Vibration Analysis of Kirchhon Rectangular Plates with Elastic Intermediate Line-supports and Edge Constraints
10.1 Introduction
10.2 A Set of Static Beam Functions
10.3 Formulation of Eigenvalue Equation
10.4 Numerical Examples
10.5 Conclusions
Chapter 11 Vibration Analysis of Kirchhoff Rectangular Plates with Elastic Point-supports
11.1 Introduction
11.2 Sets of Static Beam Functions under Point Loads
11.3 Eigenvalue Problem with Rayleigh-Ritz Method
11.4 Numerical Results
11.5 Conclusion
Chapter 12 Vibration Analysis of Symmetrically Laminated Rectangular Plates with Intermediate Line-supports
12.1 Introduction
12.2 A Set of Static Beam Functions
12.3 Eigenfrequency Equation
12.4 Numerical Results
12.4.1 Accuracy and convergency study
12.4.2 Numerical examples
12.5 Concluding remarks
Chapter 13 Vibration Analysis of Asymmetrically Laminated Rectangular Plates with Internal Line-supports
13.1 Introduction
13.2 Energy Functional
13.3 Rayleigh-Ritz Solution
13.4 Trial Functions
13.5 Convergence and Comparison Study
13.6 Numerical Results
13.7 Conclusion
Chapter 14 Vibration Analysis of Composite Rectangular Plates with Point-supports
14.1 Introduction
14.2 Static Beam Functions
14.2.1 The static beam functions under sine series loads
14.2.2 The static beam functions under a point-load
14.3 Eigenfrequency Equation
14.4 Admissible Functions
14.5 Comparison and Convergence
14.5.1 Isotropic square plates with point-supports
14.5.2 Laminated square composite plates
14.6 Numerical Results
14.7 Conclusions
Chapter 15 Vibration Analysis of Tapered Kirchhoff Rectangular Plates
15.1 Introduction
15.2 The development of a set of tapered beam functions
15.3 The Rayleigh-Ritz method
15.4 Numerical examples
15.5 Concluding remarks
Appendix
Chapter 16 Vibration Analysis of Tapered Kirchhoff Rectangular Plates with Intermediate Line-supports
16.1 Introduction
16.2 The Rayleigh-Ritz Method for Tapered Rectangular Plates
16.3 A Set of Static Beam Functions
16.3.1 The truncated beam
16.3.2 The sharp ended beam
16.3.3 The tapered beam with rigid body motions
16.4 Numerical Examples
16.5 Conclusions
Chapter 17 Vibration Analysis of Mindlin Rectangular Plates
17.1 Introduction
17.2 A Set of Static Timoshenko Beam Functions
17.3 Eigenfrequency Equation of Mindlin Plate
17.4 Comparison and Convergency Studies
17.5 The Parametric Study
17.6 Conclusions
Chapter 18 Vibration Analysis of Mindlin Rectangular Plates with Elastically Restrained Edges
18.1 Introduction
18.2 Rayleigh-Ritz Formulae for Mindlin Rectangular Plates
18.3 A Set of Static Timoshenko Beam Functions
18.4 Comparison and Convergency Studies
18.5 Numerical Results
18.6 ConclusionsChapter 19 Vibration Analysis of Mindlin Rectangular Plates
with Intermediate Line-supports
19.1 Introduction
19.2 Rayleigh-Ritz Solution of Mindlin Plate
19.3 Static Timoshenko Beam Functions
19.4 Convergence and Comparison Study
19.5 Numerical Results
19.6 Conclusions
Chapter 20 Vibrations Analysis of Tapered Mindlin Plates
20.1 Introduction
20.2 The Eigenfrequency Equation of Tapered Plates
20.3 Two Sets of Static Timoshenko Beam Functions (STBF)
20.3.1 Truncated beam
20.3.2 Sharp-ended beam
20.4 Convergence and Comparison Studies
20.5 Numerical Results
20.6 Concluding Remarks
Chapter 21 Vibration Analysis of Thick Rectangular Plates with Internal Line-supports
21.1 Introduction
21.2 Trial Functions
21.3 Numerical Examples
21.3.1 Preliminary assessment: simply supported laminated plates
21.3.2 Continuous rectangular plates
21.4 Conclusions
Chapter 22 Vibration Analysis of Layered Thick Rectangular Plates with Internal Point-supports
22.1 Introduction
22.2 Two Sets of Static Beam Functions
22.2.1 Static beam functions under a series of sinusoidal loads
22.2.2 Static beam functions under a series of point-loads
22.3 Finite Layer Formulation
22.4 Basic Functions
22.5 Numerical Studies
22.5.1 Convergence and comparison
22.5.2 Numerical examples
22.6 Concluding Remarks
Appendix A
Appendix B
Chapter 23 Vibration Analysis of Rectangular Tanks Partially Filled with Liquid
23.1 Introduction
23.2 Basic Equations
23.3 Solution of Velocity Potential
23.4 Rayleigh-Ritz-Galerkin Method
23.4.1 Rayleigh quotient
23.4.2 Eigenfrequency equation
23.5 Admissible Functions
23.6 Numerical Results
23.6.1 Convergence and comparison study
23.6.2 Parametric effect study
23.7 Conclusions
References
  

相關詞條

熱門詞條

聯絡我們