陳金兵(東南大學數學學院講師)

陳金兵(東南大學數學學院講師)

本詞條是多義詞,共2個義項
更多義項 ▼ 收起列表 ▲

陳金兵,男,博士,東南大學數學學院講師。

基本介紹

  • 中文名:陳金兵
  • 職業:教師
  • 學位/學歷:博士
  • 專業方向:孤立子與可積系統
  • 任職院校:東南大學數學學院
個人經歷,研究方向,學術成果,

個人經歷

2013,05---至今,東南大學,數學系,副教授; 2006,07---2013,04, 東南大學,數學系,講師;
Fellowships:China Society for Industrial and Applied Mathematics;

研究方向

孤立子與可積系統。

學術成果

To be updated......
24,Jinbing Chen and Runsu Zhang, The complex Hamiltonian systems and quasi-periodic solutions in the derivative nonlinear Schr\``{o}dinger equations,Stud. Appl. Math. 144 (2020) 1-26;
23, Jinbing Chen and Rong Tong, Quasi-periodic solutions to the Hirota equation, (2019) submitted;
22,Jinbing Chen, Dmitry Pelinovsky,and Robert White, Rogue waves on the periodic background in the focusing nonlinearSchr\``{o}dinger equation,Physica D 405 (2020) 132378: 1-13;
21,Jinbing Chen,Quasi-periodic solutions of the negative-order Jaulent--Miodek hierarchy, Rev. Math. Phys. 32 (2020) 2050007: 1-46;
20, Jinbing Chen, Dmitry Pelinovsky,and Robert White, Rogue waves on the double-periodic background in the focusing nonlinear Schr\``{o}dinger equation,Phys. Rev. E 100(2019)052219: 1-18;
19,Jinbing Chenand Dmitry Pelinovsky, Periodic travelling waves of the modified KdV equation and rogue waves on the periodic background,J. Nonlinear Sci. 29 (2019) 2797-2843;
18,Jinbing Chen,Quasi-periodic solutions to the negative-order KdV hierarchy,Theor. Math. Phys. 199 (2019) 798-822;
17,Jinbing Chen, Neumann type integrable reduction to the negative-order coupled Harry-Dym hierarchy, J. Phys. Soc. Jpn., 87 (2018) 104004: 1-8;
16,Jinbing Chen, Quasi-periodic solutions to the mixed Kaup-Newell hierarchy, Zeitschrift f\``{u}r Naturforschung A,73(2018) 579-593;
15,Jinbing Chenand Dmitry Pelinovsky,Rogue periodic waves of the focusing NLS equation, Proc. R. Soc. A,474(2018) 2017.0814:1-18;
14, Jinbing Chenand Dmitry Pelinovsky,Rogue periodic waves of the mKdV equation, Nonlinearity, 51 (2018) 1955-1980;
13, Jinbing Chen,Quasi-periodic solutions to a negative-order integrable system of 2-component KdV equation, Int. J. Geom. Methods Mod. Phys., 15 (2018) 1850040: 1-34;
12,Jinbing Chen, Two kinds of finite-dimensional integrable reduction to the Harry-Dym hierarchy, Mod. Phys. Lett. B, 30 (2016) 1650396: 1-16;
11,Jinbing Chen, Relation between the negative order Harry-Dym hierarchy and a family of backward Neumann type systems, J. Phys. Soc. Jpn., 85 (2016) 034004: 1-8;
10,Jinbing Chen, A class of Neumann type systems and its application, Dynam. Part. Differ. Eq. 9 (2012) 147-171;
9,Jinbing Chen, Some algebro-geometric solutions for the coupled modified Kadomtsev-Petviashvili equations arising from the Neumann type systems, J. Math. Phys. 53 (2012) 073513: 1-25;
8,Jinbing Chen, The application of Neumann type systems for solving integrable nonlinear evolution equations, Stud. Appl. Math. 127 (2011) 153-190;
7,Jinbing Chenand Zhijun Qiao, The Neumann type systems and algebro-geometric solutions of a system of coupled integrable equations, Math. Phys. Anal. Geom. 14 (2011) 171-183;
6,Jinbing Chenand Zhijun Qiao, Decomposition of the modified Kadomtsev-Petviashvili equation and its finite band solution, J. Nonlinear Math. Phys. 18 (2011) 191-203;
5,Jinbing Chen, Finite-gap solutions of 2+1 dimensional integrable nonlinear evolution equations generated by the Neumann systems, J. Math. Phys. 51 (2010) 083514: 1-26;
4,Jinbing Chenand Zhijun Qiao, Darboux transformation of the special (2+1)-dimensional Toda lattice and its explicit solution, Phys. Scr. 82 (2010) 015003: 1-5;
3, Jinbing Chen, Xianguo Geng and Zhijun Qiao, New finite-gap solutions for the coupled Burgers equations engendered by the Neumann systems, Chin. Phys. 19 (2010) 090403: 1-10;
2,Jinbing Chen, Neumann type integrable reduction for nonlinear evolution equations in 1+1 and 2+1 dimensions, J. Math. Phys. 50 (2009) 123504: 1-16;
1,Jinbing Chen, Darboux transformation and explicit solutions to a (2+1)-dimensional integrable system, Nuovo Cimento B, 124 (2009) 473-484;
1,國家自然科學基金---面上項目,周期背景下的怪波,(No.11971103),2020、1--2023、12,主持,在研;
2,國家自然科學基金---面上項目,負階孤立子方程及其有限帶解,(No.11471072),2015、1--2018、12,主持,已結題;
3, 東南大學---優秀青年教師教學科研資助計畫,(No. 3207014203),2014、1--2016、12,主持,已結題;
4, 國家自然科學基金---青年基金,關於Neumann型系統及其套用的研究,(No.11001050),2011、1--2013、12,主持,已結題。

相關詞條

熱門詞條

聯絡我們