陳志傑(清華大學丘成桐數學科學中心副教授)

陳志傑(清華大學丘成桐數學科學中心副教授)

本詞條是多義詞,共26個義項
更多義項 ▼ 收起列表 ▲

陳志傑,清華大學丘成桐數學科學中心副教授。

基本介紹

  • 中文名:陳志傑
  • 畢業院校:清華大學
  • 職稱副教授
研究領域,教育背景,工作經歷,所獲榮譽,發表論文,

研究領域

變分法、橢圓偏微分方程和Painleve方程

教育背景

2004-2008 學士 清華大學
2008-2013博士清華大學

工作經歷

2013年於清華大學取得博士學位
2018年獲2017清華大學學術新人獎
現任清華大學丘成桐數學科學中心副教授

所獲榮譽

2018年 2017清華大學學術新人獎
2018年2018 ICCM最佳論文獎

發表論文

[1]Chen Z., Kuo, T-J.and Lin C-S., Simple zero property of some holomorphic functions on the moduli space of tori, 18 pp,Science China Mathematics, accepted for publication,a special issue to celebrate Prof. Lo Yang’s 80 birthday
[2]Chen Z., Kuo, T-J.and Lin C-S., The geometry of generalized Lame equation,I,33pp,J.Math.Pures Appl.,published online.
[3]Chen Z.and Lin C-S., Sharp nonexistence results for curvature equations with four singular sources onrectangular tori, 28 pp,Amer. J. Math.,accepted for publication
[4]Chen Z.and Lin C-S., Critical points of the classical Eisenstein series of weight two, 39pp,J.Differ.Geom., accepted for publication
[5]Chen Z., Kuo T-J.andLin C-S., Non-existence of solutions for a mean field equation on flat tori at criticalparameter 16pi,Comm. Anal. Geom., accepted for publication
[6]Chen Z. and Lin C-S., A new type of non-topological bubbling solutionsto a competitive Chern-Simons model,Annali della Scuola Normale Superiore di Pisa, Classe di Scienze(5),accepted for publication
[7]Chen Z. and Lin C-S., Self-dual radial non-topological solutions to a competitive Chern-Simons model,Adv. Math., 331(2018), 484-541.
[8]Chen Z. and Lin C-S., On algebraic multiplicity of (anti)periodic eigenvalues of Hill’s equation,Proc. Amer. Math. Soc., 146(2018), 3039-3047.
[9]Chen Z., Kuo T-J.,Lin C-S. and Takemura K., Real-root property of the spectral polynomial of the Treibich-Verdierpotential and related problems,J. Differ. Equ.264(2018), 5408-5431.
[10]Chen Z., Kuo T-J.,Lin C-S. and Takemura K.,, On reducible monodromy representations of some generalized Lame equation,Math. Z, 288(2018), 679-688.
[11]Chen Z., Kuo T-J., Lin C-S. and Wang C-L., Green function, Painleve VI equation and Eisenstein series of weight one,J.Differ.Geom., 108(2018), 185-241.
[12]Chen Z., Kuo T-J.andLin C-S., Existence and non-existence of solutions of the mean field equations on flat tori,Proc. Amer. Math. Soc., 145(2017), 3989-3996.
[13]Chen Z., Kuo T-J.andLin C-S.,Unitary monodromy implies the smoothness along the real axis for somePainleve VI equation, I,J. Geom. Phys., 116(2017), 52-63.
[14]Chen Z., Kuo T-J.andLin C-S., Hamiltonian system for the elliptic form of Painleve VI equation,J.Math.Pures Appl.,106(2016), 546-581.
[15]Chen Z., Lin C-S. and Zou W.,Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrodinger system,Annali della Scuola Normale Superiore di Pisa, Classe di Scienze(5),Vol. XV (2016), 859-897.
[16]Chen Z. and Lin C-S., Asymptotic behavior of least energy solutions for a critical elliptic system,Inter. Math. Res. Not., 2015, 11045-11082.
[17]Chen Z. and Lin C-S., Removable singularity of positive solutions for a critical elliptic system with isolated singularity,Math. Ann., 363(2015),501-523.
[18]Chen Z. and Zou W., Existence and symmetry of positive ground states for a doubly critical Schrodinger system,Trans. Amer. Math. Soc.,367(2015),3599-3646.
[19]Chen Z. and Zou W., Standing waves for a coupled system of nonlinear Schrodinger equations,Ann. Mat. Pura Appl., 194(2015),183-220.
[20]Chen Z. and Zou W., Positive least energy solutions and phase separation for coupled Schrodinger equations with critical exponent: Higher dimensional case,Calc. Var. PDEs., 52(2015),423-467.
[21]Chen Z., Lin C-S. and Zou W., Sign-changing solutions and phase separation for an elliptic system with critical exponent,Comm. Partial Differ. Equ., 39(2014), 1827-1859.
[22]Chen Z. and Zou W., A remark on doubly critical elliptic systems,Calc. Var. PDEs., 50(2014), 939-965.
[23]Chen Z. and Zou W., Standing waves for linearly coupled Schrodinger equations with critical exponent.Ann.l. Henri Poincare-Anal. Non Lineaire, 31(2014), 429-447.
[24]Chen Z., Lin C-S. and Zou W., Monotonicity and nonexistence results to cooperative systems in the half space,J. Func. Anal., 266(2014), 1088-1105.
[25]Chen Z. and Zou W., On linearly coupled Schrodinger systems.Proc. Amer. Math. Soc., 142(2014), 323-333.
[26]Zhang J., Chen Z. and Zou W., Standing waves for nonlinear Schrodinger equations involving critical growth,J. Lond. Math. Soc., 90(2014), 827-844.
[27]Chen Z. and Zou W., Standing waves for coupled nonlinear Schrodinger equations with decaying potentials,J. Math. Phys., 54(2013), 111505.
[28]Chen Z., Lin C-S. and Zou W., Multiple sign-changing and semi-nodal solutions for coupled Schrodinger equations,J. Differ. Equ., 255(2013), 4289-4311.
[29]Chen Z. and Zou W., An optimal constant for the existence of least energy solutions of a coupled Schrodinger system.Calc. Var. PDEs., 48(2013), 695-711.
[30]Chen Z. and Zou W., Positive least energy solutions and phase separation for coupled Schrodinger equations with critical exponent,Arch.Ration.Mech.Anal., 205(2012), 515-551.
[31]Chen Z. and Zou W., Ground states for a system of Schrodinger equations with critical exponent.J. Funct. Anal., 262(2012), 3091-3107.
[32]Chen Z. and Zou W., On an elliptic problem with critical exponent and Hardy potential.J. Differ. Equ., 252(2012), 969-987.
[33]Chen Z. and Zou W., On the Brezis-Nirenberg problem in a ball.Differ. Integ. Equ., 25(2012), 527-542.
[34]Chen Z., Shioji N. and Zou W., Ground state and multiple solutions for a critical exponent problem.Nonl. Differ. Equ. Appl., 19(2012), 253-277.
[35]Chen Z. and Zou W., A note on the Ambrosetti-Rabinowitz condition for an elliptic system,Appl.Math.Lett., 25(2012), 1931-1935.
[36]Chen Z. and Zou W., On coupledsystems ofSchrodinger equations.Adv. Differ. Equ., 16(2011), 775-800.

相關詞條

熱門詞條

聯絡我們