《錢偉長博士學位論文:彈性板殼的內稟理論》內容簡介:錢偉長方程,在奇異攝動理論方面獨創性地寫出了有關固定圓板的大撓度問題的漸近解,國際力學界稱之為“錢偉長方程”。這部被該圖書館編號為AAT0148738的博士論文,正是不久前去世的中國科學院資深院士錢偉長奠定其在美國科學界地位的成名之作——《錢偉長博士學位論文:彈性板殼的內稟理論》,論文中提出的關於扁殼的非線性方程組被國際上稱為“錢偉長方程”。愛因斯坦看後,感嘆:這位中國青年解決了困擾我多年的問題。
基本介紹
- 中文名:錢偉長博士學位論文:彈性板殼的內稟理論
- 外文名:The Intrinsic Theory of Elastic Shells and Plates
- 作者:錢偉長
- 出版日期:2012年9月1日
- 語種:簡體中文, 英語
- ISBN:9787567103870
- 出版社:上海大學出版社
- 頁數:228頁
- 開本:16
- 品牌:上海大學出版社
內容簡介,圖書目錄,
內容簡介
《錢偉長博士學位論文:彈性板殼的內稟理論》由上海大學出版社出版。
圖書目錄
1.Introduction and summary
PART Ⅰ GENERAL THEORY
2.Calculation of macroscopic tensors in terms of microscopic quantities
3.Derivation of macroscopic equations of equilibrium from microscopic considerations
4.The macroscopic tensors in terms of the six quantities pαβ and qαβ
5.Equations of equilibrium and compatibility in terms of the six unknowns pαβ and qαβ
6.The equations of equilibrium and compatibility referred to the middle surface in the natural state
PART Ⅱ APPLICATION TO THIN PLATES
7.Classification of all thin plate problems
8.Problems of finite deflection ( q = 0), Types P1—P3
9.Problems of small deflection (q≥1, p = 1;q = 1, p = 2;q ≥ 1;p > 2q), Types P4—P8
10.Problems of very small deflection (q ≥ 2, 2q ≥ p ≥ 2), Types P9 —P11, and problems of zero deflection (q = ∞), Type P12
PART Ⅱ APPLICATION TO THIN SHELLS
11.Classification of all thin shell problems
12.Problems of thin shells with finite curvature (b = 0), Types SF1—SF8
13.Problems of thin shells with small curvature (b ≥ 1) :
Problems effectively equivalent to thin plate problems (q < b),
Types SS1—SS11 Problems of critical deflection (q = b), Types SS12—SS18
14.Problems of thin shells with small curvature (b ≥ 1): (continued)
Problems in which the deflection is small compared with the initial
curvature (q > b), Types SS19—SS27
15.Certain practical applications
(Ⅰ) Type SF4: The case of a developable shell
(Ⅱ) Type SS12 and the von Karman—Tsien theory of buckling of thin shells
Acknowledgement
Appendices
(Ⅰ) Table Ⅰ: Table of the more frequent notations
(Ⅱ) Table Ⅱ: Table of the equations of equilibrium and compatibility of thin shell and plate problems
(Ⅲ) Table Ⅱ: Table of the external force system and the macroscopic tensors
Bibliography
後記
PART Ⅰ GENERAL THEORY
2.Calculation of macroscopic tensors in terms of microscopic quantities
3.Derivation of macroscopic equations of equilibrium from microscopic considerations
4.The macroscopic tensors in terms of the six quantities pαβ and qαβ
5.Equations of equilibrium and compatibility in terms of the six unknowns pαβ and qαβ
6.The equations of equilibrium and compatibility referred to the middle surface in the natural state
PART Ⅱ APPLICATION TO THIN PLATES
7.Classification of all thin plate problems
8.Problems of finite deflection ( q = 0), Types P1—P3
9.Problems of small deflection (q≥1, p = 1;q = 1, p = 2;q ≥ 1;p > 2q), Types P4—P8
10.Problems of very small deflection (q ≥ 2, 2q ≥ p ≥ 2), Types P9 —P11, and problems of zero deflection (q = ∞), Type P12
PART Ⅱ APPLICATION TO THIN SHELLS
11.Classification of all thin shell problems
12.Problems of thin shells with finite curvature (b = 0), Types SF1—SF8
13.Problems of thin shells with small curvature (b ≥ 1) :
Problems effectively equivalent to thin plate problems (q < b),
Types SS1—SS11 Problems of critical deflection (q = b), Types SS12—SS18
14.Problems of thin shells with small curvature (b ≥ 1): (continued)
Problems in which the deflection is small compared with the initial
curvature (q > b), Types SS19—SS27
15.Certain practical applications
(Ⅰ) Type SF4: The case of a developable shell
(Ⅱ) Type SS12 and the von Karman—Tsien theory of buckling of thin shells
Acknowledgement
Appendices
(Ⅰ) Table Ⅰ: Table of the more frequent notations
(Ⅱ) Table Ⅱ: Table of the equations of equilibrium and compatibility of thin shell and plate problems
(Ⅲ) Table Ⅱ: Table of the external force system and the macroscopic tensors
Bibliography
後記