內容簡介
該書大致分為三個部分。第一部分介紹了蒙特卡羅方法的基本原理,衍生定價基礎以及金融工程中一些最重要模型的實現。第二部分描述了如何改進模擬精確度和效率。最後的第三部分講述了幾個特別的論題:價格敏感度估計,美式期權定價以及金融投資組合中的
市場風險和信貸
風險評估。
編輯推薦
“……我鼓勵對金融學中
蒙特卡羅方法有興趣的每一個人都閱讀此書。這本書寫得很出色,並且配有精選的參考書目和一個有幫助的索引,確實值得購買。”.
——Ralf Werner,OR Spectrum Operations Research Spectrum,Issue 27,2005
“本書的出版是計算金融學的一件大事。多年來,蒙特卡羅方法成功地套用於解決各式各樣的金融數學問題。通過本書的出版,作者應為將這些套用提升到一個新水平的這次不錯的嘗試而得到更高的聲譽。……”...
——A Zhigljavsky,Journal of the Operational Research Society,Vol.57,2006
圖書目錄
1 Foundations
1.1 Principles of Monte Carlo
1.1.1 Introduction
1.1.2 First Examples
1.1.3 Efficiency of Simulation Estimators
1.2 Principles of Derivatives Pricing
1.2.1 Pricing and Replication
1.2.2 Arbitrage and Risk-Neutral Pricing
1.2.3 Change of Numeraire
1.2.4 The Market Price of Risk
2 Generating Random Numbers and Random Variables
2.1 Random Number Generation
2.1.1 General Considerations
2.1.2 Linear Congruential Generators
2.1.3 Implementation of Linear Congruential Generators
2.1.4 Lattice Structure
2.1.5 Combined Generators and Other Methods
2.2 General Sampling Methods
2.2.1 Inverse Transform Method
2.2.2 Acceptance-Rejection Method
2.3 Normal Random Variables and Vectors
2.3.1 Basic Properties
2.3.2 Generating Univariate Normals
2.3.3 Generating Multivariate Normals
3 Generating Sample Paths
3.1 Brownian Motion
3.1.1 One Dimension
3.1.2 Multiple Dimensions
3.2 Geometric Brownian Motion
3.2.1 Basic Properties
3.2.2 Path-Dependent Options
3.2.3 Multiple Dimensions
3.3 Gaussian Short Rate Models
3.3.1 Basic Models and Simulation
3.3.2 Bond Prices
3.3 Multifactor Models
3.4 Square-Root Diffusions
3.4.1 Transition Density
3.4.2 Sampling Gamma and Poisson
3.4.3 Bond Prices
3.4.4 Extensions
3.5 Processes with Jumps
3.5.1 A Jump-Diffusion Model
3.5.2 Pure-Jump Processes
3.6 Forward Rate Models: Continuous Rates
3.6.1 The HJM Framework
3.6.2 The Discrete Drift
3.6.3 Implementation
3.7 Forward Rate Models: Simple Rates
3.7.1 LIBOR Market Model Dynamics
3.7.2 Pricing Derivatives
3.7.3 Simulation
3.7.4 Volatility Structure and Calibration
4 Variance Reduction Techniques
4.1 Control Variates
4.1.1 Method and Examples
4.1.2 Multiple Controls
4.1.3 Small-Sample Issues
4.1.4 Nonlinear Controls
4.2 Antithetic Variates
4.3 Stratified Sampling
4.3.1 Method and Examples
4.3.2 Applications
4.3.3 Poststratification
4.4 Latin Hypercube Sampling
4.5 Matching Underlying Assets
4.5.1 Moment Matching Through Path Adjustments
4.5.2 Weighted Monte Carlo
4.6 Importance Sampling
4.6.1 Principles and First Examples
4.6.2 Path-Dependent Options
4.7 Concluding Remarks
5 Quasi-Monte Carlo
6 Discretization Methods
7 Estimating Sensitivities
8 Pricing American Options
9 Applications in Risk Management
A Appendix: Convergence and Confidence Intervals
B Appendix: Results from Stochastic Calculus
C Appendix: The Term Structure of Interest Rates
References
Index
作者簡介
Paul Glasserman,哥倫比亞大學商學院高級副院長、Jack R.Anderson教授,美國聯邦儲蓄保險公司(FDIC)金融研究中心成員。長期從事風險管理、衍生證券定價、Monte Carlo模擬等方向的教學和研究,曾發表許多有
影響力的研究論文,並擔任著名刊物Management Science、Finance&Stochastics、Mathematical Finance等的編委。