[2] Zheng, Q.-S. et al.: Self-retracting motion of graphite microflakes. Physical Review Letters 100,.067205 (2008).
[3] Liu, Z. et al.: Observation of microscale superlubricity in graphite. Physical Review Letters 108, 205503 (2012).
[4] Yang, J. et al.: Observation of high-speed microscale superlubricity in graphite. Physical Review Letters 110, 255504 (2013).
[5] Zhang, R. et al.: Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nature Nanotechnology 8, 912-916 (2013).
[6] Song, Y. et al.: Robust microscale superlubricity in graphite/hexagonal Boron Nitride layered heterojunctions. Nature Materials 17, 894–899 (2018).
[7] Hod, O. et al.: Structural superlubricity: Frictionless motion across the length-scales. Nature (in print)
[8] Zheng, Q.-S. et al.: Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir 21, 12207-12212 (2005).
[10] Zheng, Q.-S. et al.: Small is beautiful, and dry. Science China - Physics, Mechanics & Astronomy 53, 2245–2259 (2010).
[11] Zheng, Q.-S.: On transversely isotropic, orthotropic and relative isotropic functions of symmetric tensors, skew-symmetric tensors and vectors: Parts I – V. International Journal of Engineering Science 31, 1399-1409; 1411-1423; 1425-1433; 1435-1443; 1445-1453 (1993).
[12] Zheng, Q.-S.: Theory of representations for tensor functions — A unified invariant approach to constitutive equations. Applied Mechanics Review 47, 545-587 (1994).