近似數

近似數

近似數(approximate number)是指與準確數相近的一個數。

其中,準確數即這個數的最原始數據,沒有經過約分、化簡、或者四捨五入等任何運算之前的表達方法。近似數即經過四捨五入進一法或者去尾法等方法得到的一個與原始數據相差不大的一個數。如:我國的人口無法計算準確數目,但是可以說出一個近似數,比如說我國人口有13億,13億就是一個近似數。

基本介紹

數學術語,有效數字,四則計算,加法減法,乘法除法,混合運算,

數學術語

一個數與準確數相近,這一個數稱之為近似數。
一個近似數四捨五入到哪一位,那么就說這個近似數精確到哪一位,從左邊第一個不是0的數字起到精確的數位止的所有數止。
如:我國的人口無法計算準確數目,但是可以說出一個近似數.比如說我國人口有13億,13億就是一個近似數。

有效數字

與實際數字比較接近,但不完全符合的數稱之為近似數。
對近似數,人們常需知道他的精確度。一個近似數的精確度通常有以下兩種表述方式:
  1. 四捨五入法表述。
    一個近似數四捨五入到哪一位,就說這個近似數精確到哪一位。
  2. 另外還有進一和去尾兩種方法。
    有效數字的個數表述。有四捨五入得到的近似數,從左邊第一個不是零的數字起,到末位數字為止的數所有數字,都叫做這個數的有效數字

四則計算

加法減法

在通常情況下,近似數相加減,精確度最低的一個已知數精確到哪一位,和或者差也至多只能精確到這一位。例如,一個同學前一年體重30.4千克,第二年體重比前一年增加了3.18千克。求第二年體重時要把這兩個近似數加起來。因為30.4隻精確到十分位,比3.18的精確度(精確到百分位)低,所以加得的和最多也只能精確到十分位。
求積的近似值和商的近似值的異同點求積的近似值和商的近似值的異同點
為了容易看出計算結果的可靠程度,我們在豎式中每一個加數末尾添上一個“?”,用來表示被截去的數字。
30.4?
+ 3.18
33.5?
可以看到,因為第一個加數從百分位起的數就不能確定,所以加得的和從百分位起數字也不能確定。
近似數的加減一般可按下列法則進行:(1)確定計算結果能精確到哪一個數位。(2)把已知數中超過這個數位的尾數“四捨五入”到這個數位的下一位。(3)進行計算,並且把算得的數的末一位“四捨五入”。
例1、 求近似數2.37與5.4258的和。
先把5.4258“四捨五入”到千分位,得5.426,再做加法。
2.37
+5.426
7.796
把7.796“四捨五入”到百分位,得7.80。
例2、 求近似數0.075與0.001263的差。
先把0.001263“四捨五入”到萬分位
0.075
-0.0013
0.0737
把0.0737“四捨五入”到千分位,得0.074。
例3 、求近似數25.3、0.4126、2.726的和。
25.3
0.41
+ 2.73
28.44
把28.44“四捨五入”到十分位,得28.4。

乘法除法

在通常情況下,近似數相乘除,有效數字最少的一個已知數有多少個有效數字,積或者商也至多只能有同樣多個有效數字。
例如,近似數9.04和4.3相乘,從豎式中看到,積里只有前兩位數字是確定的,就是說只能有兩位有效數字。這和第二個因數的有效數字的個數相同。
9.0 4 ?
× 4.3 ?
?????
2 7 1 2 ?
3 6 1 6 ?
3 8.?????
近似數的乘除一般可按下列法則進行:
(1)確定結果有多少個有效數字。(2)把已知數中有效數字的個數多的四捨五入到只比結果中需要的個數多一個。(3)進行計算,並且把算得的數“四捨五入”到應有的有效數字的個數。
例4、 求247.65與0.32的積。
把247.65“四捨五入”到個位。
2 4 8
×0.3 2
4 9 6
7 4 4
7 9.3 6
把79.36“四捨五入”到個位,得79。
例5 、求近似數7.9除以24.78的商。
7.9÷24.78≈7.9÷24.8≈0.318≈0.32

混合運算

近似數的混合運算,可按運算順序和近似數的計算法則分步計算,但中間運算的結果要比最後結果多取一位數字。
例6、 計算3.054×2.5-57.85÷9.21。
3.054×2.5-57.85÷9.21
≈3.05×2.5-57.85÷9.21
≈7.63-6.28≈1.4
根據已知數據,最後運算的結果要取兩位數字,因此,中間運算的結果要取三位數字。

熱門詞條

聯絡我們