20世紀60年代為了適應核能、大規模積體電路、雷射和航天等尖端技術的需要而發展起來的精度極高的一種加工技術。到80年代初,其最高加工尺寸精度已可達10納米(1納米=0.001微米)級,表面粗糙度達1納米,加工的最小尺寸達 1微米,正在向納米級加工尺寸精度的目標前進。納米級的超精密加工也稱為納米工藝(nano-technology) 。超精密加工是處於發展中的跨學科綜合技術。20 世紀 50 年代至 80 年代為技術開創期。20 世紀 50 年代末,出於航天、國防等尖端技術發展的需要,美國率先發展了超精密加工技術,開發了金剛石刀具超精密切削——單點金剛石切削(Single point diamond turning,SPDT)技術,又稱為“微英寸技術”,用於加工雷射核聚變反射鏡、戰術飛彈及載人飛船用球面、非球面大型零件等。
基本介紹
- 中文名:超精密加工
- 外文名:Ultraprecision machining
- 發展時間:20世紀60年代
- 分類:超精密切削加工,超精密特種加工
簡介
分類
超精密切削加工
超精密特種加工
異同
發展方向
我國現狀
發展
各自的超精密金剛石車床,但其套用限於少數大公司與研究單位的試驗研究,並以國防用途或科學研究用途的產品加工為主。這一時期,金剛石車床主要用於銅、鋁等軟金屬的加工,也可以加工形狀較複雜的工件,但只限於軸對稱形狀的工件例如非球面鏡等。
(2)20世紀80年代至90年代為民間工業套用初期。在20世紀80年代,美國政府推動數家民間公司Moore Special Tool和Pneumo Precision公司開始超精密加工設備的商品化,而日本數家公司如Toshiba和Hitachi與歐洲的Cmfield大學等也陸續推出產品,這些設備開始面向一般民間工業光學組件商品的製造。但此時的超精密加工設備依然高貴而稀少,主要以專用機的形式訂作。在這一時期,除了加工軟質金屬的金剛石車床外,可加工硬質金屬和硬脆性材料的超精密金剛石磨削也被開發出來。該技術特點是使用高剛性機構,以極小切深對脆性材料進行延性研磨,可使硬質金屬和脆性材料獲得納米級表面粗糙度。當然,其加工效率和機構的複雜性無法和金剛石車床相比。20世紀80年代後期,美國通過能源部“雷射核聚變項目”和陸、海、空三軍“先進制造技術開發計畫”對超精密金剛石切削工具機的開發研究,投入了巨額資金和大量人力,實現了大型零件的微英寸超精密加工。美國LLNL國家實驗室研製出的大型光學金剛石車床(Large optics diamond turning machine,LODTM)成為超精密加工史上的經典之作。這是一台最大加工直徑為1.625m的立式車床,定位精度可達28nm,藉助線上誤差補償能力,可實現長度超過1m、而直線度誤差只有士25nm的加工。
(3)20世紀90年代至今為民間工業套用成熟期。從1990年起,由於汽車、能源、醫療器材、信息、光電和通信等產業的蓬勃發展,超精密加工機的需求急劇增加,在工業界的套用包括非球面光學鏡片、Fresnel鏡片、超精密模具、磁碟驅動器磁頭、磁碟基板加工、半導體晶片切割等。在這一時期,超精密加工設備的相關技術,例如控制器、雷射干涉儀、空氣軸承精密主軸、空氣軸承導軌、油壓軸承導軌、摩擦驅動進給軸也逐漸成熟,超精密加工設備變為工業界常見的生產機器設備,許多公司,甚至是小公司也紛紛推出量產型設備。此外,設備精度也逐漸接近納米級水平,加工行程變得更大,加工套用也逐漸增廣,除了金剛石車床和超精密研磨外,超精密五軸銑削和飛切技術也被開發出來,並且可以加工非軸對稱非球面的光學鏡片。
世界上的超精密加工強國以歐美和日本為先,但兩者的研究重點並不一樣。歐美出於對能源或空間開發的重視,特別是美國,幾十年來不斷投入巨額經費,對大型紫外線、x射線探測望遠鏡的大口徑反射鏡的加工進行研究。如美國太空署(NASA)推動的太空開發計畫,以製作1m以上反射鏡為目標,目的是探測x射線等短波(O.1~30nm)。由於X射線能量密度高,必須使反射鏡表面粗糙度達到埃級來提高反射率。此類反射鏡的材料為質量輕且熱傳導性良好的碳化矽,但碳化矽硬度很高,須使用超精密研磨加工等方法。日本對超精密加工技術的研究相對美、英來說起步較晚,卻是當今世界上超精密加工技術發展最快的國家。日本超精密加工的套用對象大部分是民用產品,包括辦公自動化設備、視像設備、精密測量儀器、醫療器械和人造器官等。日本在聲、光、圖像、辦公設備中的小型、超小型電子和光學零件的超精密加工技術方面,具有優勢,甚至超過了美國。日本超精密加工最初從鋁、銅輪轂的金剛石切削開始,而後集中於計算機硬碟磁片的大批量生產,隨後是用於雷射印表機等設備的多面鏡的快速金剛石切削,之後是非球面透鏡等光學元件的超精密切削。l982年上市的EastnlanKodak數位相機使用的一枚非球面透鏡引起了日本產業界的廣泛關注,因為1枚非球面透鏡至少可替代3枚球面透鏡,光學成像系統因而小型化、輕質化,可廣泛套用於照相機、錄像機、工業電視、機器人視覺、CD、VCD、DvD、投影儀等光電產品。因而,非球面透鏡的精密成形加工成為日本光學產業界的研究熱點。
儘管隨時代的變化,超精密加工技術不斷更新,加工精度不斷提高,各國之間的研究側重點有所不同,但促進超精密加工發展的因素在本質上是相同的。這些因素可歸結如下。
(1)對產品高質量的追求。為使磁片存儲密度更高或鏡片光學性能更好,就必須獲得粗糙度更低的表面。為使電子元件的功能正常發揮,就要求加工後的表面不能殘留加工變質層。按美國微電子技術協會(SIA)提出的技術要求,下一代計算機硬碟的磁頭要求表面粗糙度Ra≤0.2nm,磁碟要求表面劃痕深度h≤lnm,表面粗糙度Ra≤0.1nmp。1983年TANIGUCHI對各時期的加工精度進行了總結並對其發展趨勢進行了預測,以此為基礎,BYRNE描繪了20世紀40年代後加工精度的發展。
(4)對產品高性能的追求。機構運動精度的提高,有利於減緩力學性能的波動、降低振動和噪聲。對內燃機等要求高密封性的機械,良好的表面粗糙度可減少泄露而降低損失。二戰後,航空航天工業要求部分零件在高溫環境下工作,因而採用鈦合金、陶瓷等難加工材料,為超精密加工提出了新的課題。