費曼圖(費恩曼圖)

費曼圖

費恩曼圖一般指本詞條

費曼圖是美國著名物理學家、繼薛丁格和沃納·海森堡後提出第三種建立量子力學的方式的理察 費曼所創立的一種用形象化的方法,方便地處理量子場中各種粒子相互作用的圖。

基本介紹

  • 中文名:費曼圖
  • 外文名:Feynman diagram
  • 定義:第三種量子力學的方式
  • 作用:廣泛運用於統計學
  • 套用學科:量子力學術語
  • 範疇:理工科
概念,套用,

概念

在費曼圖(Feynman Diagram)中,粒子由線表示,費米子一般用實線,光子用波浪線,玻色子用虛線,膠子用圈線。一線與另一線的連線點稱為頂點。費曼圖的橫軸一般為時間軸,向右為正,左邊代表初態,右邊代表末態。與向右的箭頭代表費米子的輕子數或重子數為正,與向左的箭頭表示費米子的輕子數或重子數為負。
圖1中,電子與正電子湮滅產生虛光子,而該虛光子生成夸克反夸克組,然後其中一個放射出一個膠子。(時間由左至右,一維空間由上至下)。兩個粒子的相互作用量由反應截面積所量化,其大小取決於它們的碰撞,該相互作用發生的機率尤其重要。如果該相互作用的強度不太大﹝即是能夠用攝動理論解決﹞,這反應截面積﹝或更準確來說是對應的時間演變運算元、分布函式或S矩陣﹞能夠用一系列的項﹝戴森級數﹞所表示,這些項能描述一段短時間所發生的故事。
費曼圖

套用

粒子物理學中,計算散射反應截面積的難題簡化成加起所有可能存在的居間態振幅﹝每一個對應攝動理論又稱戴森級數的一個項﹞。用費曼圖表示這些狀態以,比了解當年冗長計算容易得多。從該系統的基礎拉格朗日量能夠得出費曼法則,費曼就是用該法則表明如何計算圖中的振幅。每一條內線對應虛粒子的分布函式;每一個線相遇頂點給出一個因子和來去的兩線,該因子能夠從相互作用項的拉格朗日量中得出,而線則約束了能量、動量和自旋。費曼圖因此是出現在戴森級數每一個項的因子的符號寫法。
但是,作為攝動的展開式,費曼圖不能包涵非攝動效應。
除了它們在作為數學技巧的價值外,費曼圖為粒子的相互作用提供了深入的科學理解。粒子會在每一個可能的方式下相互作用:實際上,居間的虛粒子超越光速是允許的。(這是基於測不準原理,並且不違反相對論,因為狹義相對論只要求可觀測量滿足因果律;事實上,超越光速對保留相對性時空的偶然性有幫助。)每一個終態的機率然後就從所有如此的機率中得出。這跟量子力學的功能積分表述有密切關係,該表述(路徑積分)也是由費曼發明的。
如此計算如果在缺少經驗的情況下使用,通常會得出圖的振幅為無窮大,這個答案在物理理論中是要不得的。問題在於粒子自身的相互作用被錯誤地忽視了。重整化的技巧(是由費曼、施溫格和朝永所開發的)彌補了這個效應並消除了麻煩的無窮大項。經過這樣的重整化後,用費曼圖做的計算通常能與實驗結果準確地吻合。
費曼圖及路徑積分法亦被套用於統計力學中。
有關費圖及路徑積分的數學內容尚未完善,它還處於依賴物理直觀的階段。

相關詞條

熱門詞條

聯絡我們