基本介紹
什麼是貨幣乘數論,貨幣乘數論的模型,
什麼是貨幣乘數論
所謂貨幣乘數就是指基礎貨幣擴張或收縮的倍數。他們認為,在狹義的貨幣定義下(即M1,現金加活期存款),貨幣供應量的決定因素有兩個:一個是基礎貨幣(用B表示),又稱高能貨幣或強力貨幣,由現金與銀行存款準備金組成,它是貨幣供應量(用Ms表示)變動的基礎;另一個就是貨幣乘數(用m表示),這樣貨幣供應量的基本公式可以表示為:Ms=Bm
貨幣乘數論的模型
1、簡單乘數模型
m=1/r
式中:
m為貨幣乘數
r為法定存款準備金率
簡單乘數模型以商業銀行創造存款貨幣的過程為根據而提出的。在早期的論述中,新古典綜合派進行的是簡單的抽象分析,認為在現代銀行制度下,商業銀行能夠通過其業務活動創造出存款貨幣來。這個過程簡單地說就是:第一家商業銀行在接受基礎貨幣作為初始存款後,除了保留的法定準備金以外,均用於貸款或投資。第二家商業銀行接受了由這筆貸款或投資轉化而來的存款以後也是照此辦理,通過各級商業銀行延續的連鎖反應,最終創造出數倍於該筆初始存款的存款貨幣。這個初始存款的派生倍數稱為貨幣乘數,其數值等於法定存款準備金率的倒數。
2、複雜乘數模型
在簡單乘數模型中有兩個假定,即假定商業銀行不保留超額準備金和假定原始存款不漏出存款領域。而在現實生活中,這兩個假定是不切實際的。也就是說,實際上商業銀行一般都因各種原因而保留一定的超額準備金,原始存款也在不斷地漏出存款領域。這兩部分金額如同法定存款準備金一樣因退出了存款貨幣的派生過程,也影響著存款貨幣的擴張效果,因此,新古典綜合派的薩繆爾森又把這兩種因素考慮在內,在簡單貨幣乘數模型的基礎上提出了較為符合實際的複雜貨幣乘數公式。
薩繆爾森用“超額準備金率”來衡量商業銀行超額準備的大小,用“現金漏損率”來衡量原始存款漏出存款領域的多少。超額準備金率是商業銀行保留的超過法定準備金的準備金與存款貨幣的比率;現金漏損率是顧客在整個存款派生過程中所提取的現金總額與存款貨幣的比率。
m=1/(r+e+c)
3、貨幣乘數論的基礎:M1、M2。