《變分學中的多重積分(英文)》包含了大量科研人員學習多重積分變分問題和雙曲偏微分方程問題的材料。書中不僅是作者科研成果的總結,更是同時代該領域或者相關領域的專業人士的巨大貢獻。《變分學中的多重積分(英文)》無疑會成為該領域科研人員的標準差參考書。《變分學中的多重積分(英文)》的主要讀者是對數學分析有一定基礎的人員,分析專業的學生將會受益匪淺。
基本介紹
- 書名:變分學中的多重積分
- 作者:莫里 (Charles B.Morrey)
- 出版日期:2013年3月1日
- 語種:簡體中文, 英語
- ISBN:9787510058318
- 外文名:Multiple Integrals in the Calculus of Variations
- 出版社:世界圖書出版公司北京公司
- 頁數:506頁
- 開本:24
- 品牌:世界圖書出版公司北京公司
內容簡介,圖書目錄,
內容簡介
《變分學中的多重積分(英文)》由世界圖書出版公司北京公司出版。
圖書目錄
Chapter 1
Introduction
1.1. Introductory remarks
1.2. The plan of the book: notation
1.3. Very brief historical remarks
1.4. The EULER equations
1.5. Other classical necessary conditions
1.6. Classical sufficient conditions
1.7. The direct methods
1.8. Lower semicontinuity
1.9. Existence
1.10. The differentiabilitv theory. Introduction
1.11. Differentiability; reduction to linear equations
Chapter 2
Semi-classical results
2.1. Introduction
2.2. Elementary properties of harmonic functions
2.3. WEYL'S lemma
2.4. POISSON'S integral formula; elementary functions; GREEN'S functions
2.5. Potentials
2.6. Generalized potential theory; singular integrals
2.7. The CALDERON-ZYGMUND inequalities
2.8. The maximum principle for a linear elliptic equation of the second order
……
Chapter 3
The spaces Hmp and Hmpo
Chapter 4
Existence theorems
Chapter 5
Differentiability of weak solutions
Chapter 6
Regularity theorems for the solutions of general elliptic systems and boundary value problems
Chapter 7
A variational method in the theory of harmonic integrals
Introduction
1.1. Introductory remarks
1.2. The plan of the book: notation
1.3. Very brief historical remarks
1.4. The EULER equations
1.5. Other classical necessary conditions
1.6. Classical sufficient conditions
1.7. The direct methods
1.8. Lower semicontinuity
1.9. Existence
1.10. The differentiabilitv theory. Introduction
1.11. Differentiability; reduction to linear equations
Chapter 2
Semi-classical results
2.1. Introduction
2.2. Elementary properties of harmonic functions
2.3. WEYL'S lemma
2.4. POISSON'S integral formula; elementary functions; GREEN'S functions
2.5. Potentials
2.6. Generalized potential theory; singular integrals
2.7. The CALDERON-ZYGMUND inequalities
2.8. The maximum principle for a linear elliptic equation of the second order
……
Chapter 3
The spaces Hmp and Hmpo
Chapter 4
Existence theorems
Chapter 5
Differentiability of weak solutions
Chapter 6
Regularity theorems for the solutions of general elliptic systems and boundary value problems
Chapter 7
A variational method in the theory of harmonic integrals