計算機視覺特徵提取與圖像處理(第三版)(英文版)

計算機視覺特徵提取與圖像處理(第三版)(英文版)

《計算機視覺特徵提取與圖像處理(第三版)(英文版)》是2013年2月電子工業出版社出版的圖書,作者是Mark S· Nixon(馬克 S· 尼克森)、Alberto S· Aguado(阿爾貝托 S· 阿瓜多)。

基本介紹

  • 書名:計算機視覺特徵提取與圖像處理(第三版)(英文版)
  • 作者:Mark S. Nixon(馬克 S. 尼克森)
    Alberto S. Aguado(阿爾貝托 S. 阿瓜多)
  • ISBN:9787121195273
  • 頁數:628頁
  • 定價:89元
  • 出版社:電子工業出版社
  • 出版時間:2013年2月
  • 開本:16開
內容簡介,圖書目錄,

內容簡介

本書是由英國南安普頓大學的Mark Nixon教授和Sportradar公司的Alberto S. Aguado在第二版的基礎上,於2012年9月推出的最新改版之作(第3版)。本次改版,主要的變化是將高紙祖詢愚級特徵提取,分為固定形狀匹配與可變形形狀分析兩甩旬茅芝燥部分,並增加了新的一章內容:運動對象檢測與描述。熱獄愚具體地踏地雅,在簡要介紹計算機視覺的基礎概念和基本的圖像處理運算後,重點討論了低級和高級的特徵提取,包括邊緣檢戶朽葛記測、固定形狀多贈料匹配和可變形形狀分析。

圖書目錄

Contents
Preface ......................................................................................................................xi
About the authors ................................................................................................. xvii
CHAPTER 1 Introduction ............................................................................. 1
1.1 Overview ......................................................................................1
1.2 Human and computer vision........................................................2
1.3 The human vision system ............................................................4
1.3.1 The eye.............................................................................5
1.3.2 The neural system............................................................8
1.3.3 Processing ........................................................................9
1.4 Computer vision systems...........................................................12
1.4.1 Cameras..........................................................................12
1.4.2 Computer interfaces.......................................................15
1.4.3 Processing an image ......................................................17
1.5 Mathematical systems................................................................19
1.5.1 Mathematical tools ........................................................19
1.5.2 Hello Matlab, hello images! ..........................................20
1.5.3 Hello Mathcad! ..............................................................25
1.6 Associated literature ..................................................................30
1.6.1 Journals, magazines, and conferences...........................30
1.6.2 Textbooks.......................................................................31
1.6.3 The Web.........................................................................34
1.7 Conclusions ................................................................................35
1.8 References ..................................................................................35
CHAPTER 2 Images, Sampling, and Frequency
Domain Processing............................................................. 37
2.1 Overview ....................................................................................37
2.2 Image formation.........................................................................38
2.3 The Fourier transform................................................................42
2.4 The sampling criterion...............................................................49
2.5 The discrete Fourier transform ..................................................53
2.5.1 1D transform..................................................................53
2.5.2 2D transform..................................................................57
2.6 Other properties of the Fourier transform.................................63
2.6.1 Shift invariance..............................................................63
2.6.2 Rotation..........................................................................65
2.6.3 Frequency scaling ..........................................................66
2.6.4 Superposition (linearity) ................................................67
v
2.7 Transforms other than Fourier...................................................68
2.7.1 Discrete cosine transform..............................................68
2.7.2 Discrete Hartley transform ............................................70
2.7.3 Introductory wavelets ....................................................71
2.7.4 Other transforms ............................................................78
2.8 Applications using frequency domain properties......................78
2.9 Further reading...........................................................................80
2.10 References..................................................................................81
CHAPTER 3 Basic Image Processing Operations............................. 83
3.1 Overview ....................................................................................83
3.2 Histograms .................................................................................84
3.3 Point operators ...........................................................................86
3.3.1 Basic point operations ...................................................86
3.3.2 Histogram normalization ...............................................89
3.3.3 Histogram equalization..................................................90
3.3.4 Thresholding ..................................................................93
3.4 Group operations........................................................................98
3.4.1 Template convolution ....................................................98
3.4.2 Averaging operator ......................................................101
3.4.3 On different template size ...........................................103
3.4.4 Gaussian averaging operator .......................................104
3.4.5 More on averaging.......................................................107
3.5 Other statistical operators ........................................................109
3.5.1 Median filter ................................................................109
3.5.2 Mode filter ...................................................................112
3.5.3 Anisotropic diffusion ...................................................114
3.5.4 Force field transform ...................................................121
3.5.5 Comparison of statistical operators .............................122
3.6 Mathematical morphology.......................................................123
3.6.1 Morphological operators..............................................124
3.6.2 Gray-level morphology................................................127
3.6.3 Gray-level erosion and dilation ...................................128
3.6.4 Minkowski operators ...................................................130
3.7 Further reading.........................................................................134
3.8 References ................................................................................134
CHAPTER 4 Low-Level Feature Extraction (including
edge detection)..................................................................137
4.1 Overview ..................................................................................138
4.2 Edge detection..........................................................................140
4.2.1 First-order edge-detection operators ...........................140
4.2.2 Second-order edge-detection operators .......................161
vi Contents
4.2.3 Other edge-detection operators ...................................170
4.2.4 Comparison of edge-detection operators ....................171
4.2.5 Further reading on edge detection...............................173
4.3 Phase congruency.....................................................................173
4.4 Localized feature extraction ....................................................180
4.4.1 Detecting image curvature (corner extraction) ...........180
4.4.2 Modern approaches: region/patch analysis .................193
4.5 Describing image motion.........................................................199
4.5.1 Area-based approach ...................................................200
4.5.2 Differential approach...................................................204
4.5.3 Further reading on optical flow...................................211
4.6 Further reading.........................................................................212
4.7 References ................................................................................212
CHAPTER 5 High-Level Feature Extraction: Fixed Shape
Matching ..............................................................................217
5.1 Overview ..................................................................................218
5.2 Thresholding and subtraction ..................................................220
5.3 Template matching ..................................................................222
5.3.1 Definition .....................................................................222
5.3.2 Fourier transform implementation...............................230
5.3.3 Discussion of template matching ................................234
5.4 Feature extraction by low-level features .................................235
5.4.1 Appearance-based approaches.....................................235
5.4.2 Distribution-based descriptors .....................................238
5.5 Hough transform ......................................................................243
5.5.1 Overview......................................................................243
5.5.2 Lines.............................................................................243
5.5.3 HT for circles...............................................................250
5.5.4 HT for ellipses .............................................................255
5.5.5 Parameter space decomposition ..................................258
5.5.6 Generalized HT............................................................271
5.5.7 Other extensions to the HT .........................................287
5.6 Further reading.........................................................................288
5.7 References ................................................................................289
CHAPTER 6 High-Level Feature Extraction: Deformable
Shape Analysis ...........................................................293
6.1 Overview ..................................................................................293
6.2 Deformable shape analysis ......................................................294
6.2.1 Deformable templates..................................................294
6.2.2 Parts-based shape analysis...........................................297
Contents vii
6.3 Active contours (snakes)..........................................................299
6.3.1 Basics ...........................................................................299
6.3.2 The Greedy algorithm for snakes................................301
6.3.3 Complete (Kass) snake implementation......................308
6.3.4 Other snake approaches...............................................313
6.3.5 Further snake developments ........................................314
6.3.6 Geometric active contours (level-set-based
approaches) ..................................................................318
6.4 Shape skeletonization ..............................................................325
6.4.1 Distance transforms .....................................................325
6.4.2 Symmetry.....................................................................327
6.5 Flexible shape models—active shape and active
appearance................................................................................334
6.6 Further reading.........................................................................338
6.7 References ................................................................................338
CHAPTER 7 Object Description.............................................................343
7.1 Overview ..................................................................................343
7.2 Boundary descriptions .............................................................345
7.2.1 Boundary and region ...................................................345
7.2.2 Chain codes..................................................................346
7.2.3 Fourier descriptors .......................................................349
7.3 Region descriptors ...................................................................378
7.3.1 Basic region descriptors ..............................................378
7.3.2 Moments ......................................................................383
7.4 Further reading.........................................................................395
7.5 References ................................................................................395
CHAPTER 8 Introduction to Texture Description,
Segmentation, and Classification ............................399
8.1 Overview ..................................................................................399
8.2 What is texture? .......................................................................400
8.3 Texture description ..................................................................403
8.3.1 Performance requirements ...........................................403
8.3.2 Structural approaches ..................................................403
8.3.3 Statistical approaches ..................................................406
8.3.4 Combination approaches .............................................409
8.3.5 Local binary patterns ...................................................411
8.3.6 Other approaches .........................................................417
8.4 Classification............................................................................417
8.4.1 Distance measures .......................................................417
8.4.2 The k-nearest neighbor rule.........................................424
8.4.3 Other classification approaches...................................428
viii Contents
8.5 Segmentation............................................................................429
8.6 Further reading.........................................................................431
8.7 References ................................................................................432
CHAPTER 9 Moving Object Detection and Description ..............435
9.1 Overview ..................................................................................435
9.2 Moving object detection ..........................................................437
9.2.1 Basic approaches .........................................................437
9.2.2 Modeling and adapting to the (static) background .....442
9.2.3 Background segmentation by thresholding .................447
9.2.4 Problems and advances................................................450
9.3 Tracking moving features ........................................................451
9.3.1 Tracking moving objects .............................................451
9.3.2 Tracking by local search .............................................452
9.3.3 Problems in tracking....................................................455
9.3.4 Approaches to tracking................................................455
9.3.5 Meanshift and Camshift ..............................................457
9.3.6 Recent approaches .......................................................472
9.4 Moving feature extraction and description .............................474
9.4.1 Moving (biological) shape analysis.............................474
9.4.2 Detecting moving shapes by shape matching
in image sequences ......................................................476
9.4.3 Moving shape description............................................480
9.5 Further reading.........................................................................483
9.6 References ................................................................................484
CHAPTER 10 Appendix 1: Camera Geometry Fundamentals........489
10.1 Image geometry .......................................................................489
10.2 Perspective camera ..................................................................490
10.3 Perspective camera model .......................................................491
10.3.1 Homogeneous coordinates and projective
geometry.......................................................................491
10.3.2 Perspective camera model analysis .............................496
10.3.3 Parameters of the perspective camera model..............499
10.4 Affine camera ..........................................................................500
10.4.1 Affine camera model ...................................................501
10.4.2 Affine camera model and the perspective
projection .....................................................................503
10.4.3 Parameters of the affine camera model.......................504
10.5 Weak perspective model..........................................................505
10.6 Example of camera models .....................................................507
10.7 Discussion ................................................................................517
10.8 References................................................................................518
Contents ix
CHAPTER 11 Appendix 2: Least Squares Analysis .......................519
11.1 The least squares criterion .......................................................519
11.2 Curve fitting by least squares ..................................................521
CHAPTER 12 Appendix 3: Principal Components Analysis .......525
12.1 Principal components analysis ..............................................525
12.2 Data ........................................................................................526
12.3 Covariance .............................................................................526
12.4 Covariance matrix..................................................................529
12.5 Data transformation ...............................................................530
12.6 Inverse transformation ...........................................................531
12.7 Eigenproblem.........................................................................532
12.8 Solving the eigenproblem......................................................533
12.9 PCA method summary ..........................................................533
12.10 Example .................................................................................534
12.11 References..............................................................................540
CHAPTER 13 Appendix 4: Color Images.......................................541
13.1 Color images..........................................................................542
13.2 Tristimulus theory..................................................................542
13.3 Color models..........................................................................544
13.3.1 The colorimetric equation .......................................544
13.3.2 Luminosity function ................................................545
13.3.3 Perception based color models: the CIE RGB
and CIE XYZ...........................................................547
13.3.4 Uniform color spaces: CIE LUV and CIE LAB.....562
13.3.5 Additive and subtractive color models: RGB
and CMY .................................................................568
13.3.6 Luminance and chrominance color models:
YUV, YIQ, and YCbCr...........................................575
13.3.7 Perceptual color models: HSV and HLS ................583
13.3.8 More color models...................................................599
13.4 References..............................................................................600
Index ......................................................................................................................601
x Contents
1.4.1 Cameras..........................................................................12
1.4.2 Computer interfaces.......................................................15
1.4.3 Processing an image ......................................................17
1.5 Mathematical systems................................................................19
1.5.1 Mathematical tools ........................................................19
1.5.2 Hello Matlab, hello images! ..........................................20
1.5.3 Hello Mathcad! ..............................................................25
1.6 Associated literature ..................................................................30
1.6.1 Journals, magazines, and conferences...........................30
1.6.2 Textbooks.......................................................................31
1.6.3 The Web.........................................................................34
1.7 Conclusions ................................................................................35
1.8 References ..................................................................................35
CHAPTER 2 Images, Sampling, and Frequency
Domain Processing............................................................. 37
2.1 Overview ....................................................................................37
2.2 Image formation.........................................................................38
2.3 The Fourier transform................................................................42
2.4 The sampling criterion...............................................................49
2.5 The discrete Fourier transform ..................................................53
2.5.1 1D transform..................................................................53
2.5.2 2D transform..................................................................57
2.6 Other properties of the Fourier transform.................................63
2.6.1 Shift invariance..............................................................63
2.6.2 Rotation..........................................................................65
2.6.3 Frequency scaling ..........................................................66
2.6.4 Superposition (linearity) ................................................67
v
2.7 Transforms other than Fourier...................................................68
2.7.1 Discrete cosine transform..............................................68
2.7.2 Discrete Hartley transform ............................................70
2.7.3 Introductory wavelets ....................................................71
2.7.4 Other transforms ............................................................78
2.8 Applications using frequency domain properties......................78
2.9 Further reading...........................................................................80
2.10 References..................................................................................81
CHAPTER 3 Basic Image Processing Operations............................. 83
3.1 Overview ....................................................................................83
3.2 Histograms .................................................................................84
3.3 Point operators ...........................................................................86
3.3.1 Basic point operations ...................................................86
3.3.2 Histogram normalization ...............................................89
3.3.3 Histogram equalization..................................................90
3.3.4 Thresholding ..................................................................93
3.4 Group operations........................................................................98
3.4.1 Template convolution ....................................................98
3.4.2 Averaging operator ......................................................101
3.4.3 On different template size ...........................................103
3.4.4 Gaussian averaging operator .......................................104
3.4.5 More on averaging.......................................................107
3.5 Other statistical operators ........................................................109
3.5.1 Median filter ................................................................109
3.5.2 Mode filter ...................................................................112
3.5.3 Anisotropic diffusion ...................................................114
3.5.4 Force field transform ...................................................121
3.5.5 Comparison of statistical operators .............................122
3.6 Mathematical morphology.......................................................123
3.6.1 Morphological operators..............................................124
3.6.2 Gray-level morphology................................................127
3.6.3 Gray-level erosion and dilation ...................................128
3.6.4 Minkowski operators ...................................................130
3.7 Further reading.........................................................................134
3.8 References ................................................................................134
CHAPTER 4 Low-Level Feature Extraction (including
edge detection)..................................................................137
4.1 Overview ..................................................................................138
4.2 Edge detection..........................................................................140
4.2.1 First-order edge-detection operators ...........................140
4.2.2 Second-order edge-detection operators .......................161
vi Contents
4.2.3 Other edge-detection operators ...................................170
4.2.4 Comparison of edge-detection operators ....................171
4.2.5 Further reading on edge detection...............................173
4.3 Phase congruency.....................................................................173
4.4 Localized feature extraction ....................................................180
4.4.1 Detecting image curvature (corner extraction) ...........180
4.4.2 Modern approaches: region/patch analysis .................193
4.5 Describing image motion.........................................................199
4.5.1 Area-based approach ...................................................200
4.5.2 Differential approach...................................................204
4.5.3 Further reading on optical flow...................................211
4.6 Further reading.........................................................................212
4.7 References ................................................................................212
CHAPTER 5 High-Level Feature Extraction: Fixed Shape
Matching ..............................................................................217
5.1 Overview ..................................................................................218
5.2 Thresholding and subtraction ..................................................220
5.3 Template matching ..................................................................222
5.3.1 Definition .....................................................................222
5.3.2 Fourier transform implementation...............................230
5.3.3 Discussion of template matching ................................234
5.4 Feature extraction by low-level features .................................235
5.4.1 Appearance-based approaches.....................................235
5.4.2 Distribution-based descriptors .....................................238
5.5 Hough transform ......................................................................243
5.5.1 Overview......................................................................243
5.5.2 Lines.............................................................................243
5.5.3 HT for circles...............................................................250
5.5.4 HT for ellipses .............................................................255
5.5.5 Parameter space decomposition ..................................258
5.5.6 Generalized HT............................................................271
5.5.7 Other extensions to the HT .........................................287
5.6 Further reading.........................................................................288
5.7 References ................................................................................289
CHAPTER 6 High-Level Feature Extraction: Deformable
Shape Analysis ...........................................................293
6.1 Overview ..................................................................................293
6.2 Deformable shape analysis ......................................................294
6.2.1 Deformable templates..................................................294
6.2.2 Parts-based shape analysis...........................................297
Contents vii
6.3 Active contours (snakes)..........................................................299
6.3.1 Basics ...........................................................................299
6.3.2 The Greedy algorithm for snakes................................301
6.3.3 Complete (Kass) snake implementation......................308
6.3.4 Other snake approaches...............................................313
6.3.5 Further snake developments ........................................314
6.3.6 Geometric active contours (level-set-based
approaches) ..................................................................318
6.4 Shape skeletonization ..............................................................325
6.4.1 Distance transforms .....................................................325
6.4.2 Symmetry.....................................................................327
6.5 Flexible shape models—active shape and active
appearance................................................................................334
6.6 Further reading.........................................................................338
6.7 References ................................................................................338
CHAPTER 7 Object Description.............................................................343
7.1 Overview ..................................................................................343
7.2 Boundary descriptions .............................................................345
7.2.1 Boundary and region ...................................................345
7.2.2 Chain codes..................................................................346
7.2.3 Fourier descriptors .......................................................349
7.3 Region descriptors ...................................................................378
7.3.1 Basic region descriptors ..............................................378
7.3.2 Moments ......................................................................383
7.4 Further reading.........................................................................395
7.5 References ................................................................................395
CHAPTER 8 Introduction to Texture Description,
Segmentation, and Classification ............................399
8.1 Overview ..................................................................................399
8.2 What is texture? .......................................................................400
8.3 Texture description ..................................................................403
8.3.1 Performance requirements ...........................................403
8.3.2 Structural approaches ..................................................403
8.3.3 Statistical approaches ..................................................406
8.3.4 Combination approaches .............................................409
8.3.5 Local binary patterns ...................................................411
8.3.6 Other approaches .........................................................417
8.4 Classification............................................................................417
8.4.1 Distance measures .......................................................417
8.4.2 The k-nearest neighbor rule.........................................424
8.4.3 Other classification approaches...................................428
viii Contents
8.5 Segmentation............................................................................429
8.6 Further reading.........................................................................431
8.7 References ................................................................................432
CHAPTER 9 Moving Object Detection and Description ..............435
9.1 Overview ..................................................................................435
9.2 Moving object detection ..........................................................437
9.2.1 Basic approaches .........................................................437
9.2.2 Modeling and adapting to the (static) background .....442
9.2.3 Background segmentation by thresholding .................447
9.2.4 Problems and advances................................................450
9.3 Tracking moving features ........................................................451
9.3.1 Tracking moving objects .............................................451
9.3.2 Tracking by local search .............................................452
9.3.3 Problems in tracking....................................................455
9.3.4 Approaches to tracking................................................455
9.3.5 Meanshift and Camshift ..............................................457
9.3.6 Recent approaches .......................................................472
9.4 Moving feature extraction and description .............................474
9.4.1 Moving (biological) shape analysis.............................474
9.4.2 Detecting moving shapes by shape matching
in image sequences ......................................................476
9.4.3 Moving shape description............................................480
9.5 Further reading.........................................................................483
9.6 References ................................................................................484
CHAPTER 10 Appendix 1: Camera Geometry Fundamentals........489
10.1 Image geometry .......................................................................489
10.2 Perspective camera ..................................................................490
10.3 Perspective camera model .......................................................491
10.3.1 Homogeneous coordinates and projective
geometry.......................................................................491
10.3.2 Perspective camera model analysis .............................496
10.3.3 Parameters of the perspective camera model..............499
10.4 Affine camera ..........................................................................500
10.4.1 Affine camera model ...................................................501
10.4.2 Affine camera model and the perspective
projection .....................................................................503
10.4.3 Parameters of the affine camera model.......................504
10.5 Weak perspective model..........................................................505
10.6 Example of camera models .....................................................507
10.7 Discussion ................................................................................517
10.8 References................................................................................518
Contents ix
CHAPTER 11 Appendix 2: Least Squares Analysis .......................519
11.1 The least squares criterion .......................................................519
11.2 Curve fitting by least squares ..................................................521
CHAPTER 12 Appendix 3: Principal Components Analysis .......525
12.1 Principal components analysis ..............................................525
12.2 Data ........................................................................................526
12.3 Covariance .............................................................................526
12.4 Covariance matrix..................................................................529
12.5 Data transformation ...............................................................530
12.6 Inverse transformation ...........................................................531
12.7 Eigenproblem.........................................................................532
12.8 Solving the eigenproblem......................................................533
12.9 PCA method summary ..........................................................533
12.10 Example .................................................................................534
12.11 References..............................................................................540
CHAPTER 13 Appendix 4: Color Images.......................................541
13.1 Color images..........................................................................542
13.2 Tristimulus theory..................................................................542
13.3 Color models..........................................................................544
13.3.1 The colorimetric equation .......................................544
13.3.2 Luminosity function ................................................545
13.3.3 Perception based color models: the CIE RGB
and CIE XYZ...........................................................547
13.3.4 Uniform color spaces: CIE LUV and CIE LAB.....562
13.3.5 Additive and subtractive color models: RGB
and CMY .................................................................568
13.3.6 Luminance and chrominance color models:
YUV, YIQ, and YCbCr...........................................575
13.3.7 Perceptual color models: HSV and HLS ................583
13.3.8 More color models...................................................599
13.4 References..............................................................................600
Index ......................................................................................................................601
x Contents

相關詞條

熱門詞條

聯絡我們