基本介紹
- 書名:計算化學:分子和量子力學理論及套用導論
- 作者:里沃斯(Errol G.Lewars)
- 出版社:科學出版社
- 頁數:664頁
- 開本:16
- 品牌:科學出版社
- 外文名:Computational Chemistry Introduction to the Theory and Applications of Molecular and Quantum Mechanics(2nd Edition)
- 類型:科學與自然
- 出版日期:2012年1月1日
- 語種:英語
- ISBN:9787030332998
基本介紹,內容簡介,作者簡介,圖書目錄,
基本介紹
內容簡介
《計算化學:分子和量子力學理論及套用導論(原著第2版)(英文版)》是由國外化學經典教材系列(影印版)。
作者簡介
作者:(加拿大)里沃斯(Errol G.Lewars)
圖書目錄
1.An Outline of What Computational Chemistry Is All About
1.1 What You Can Do with Computational Chemistry,
1.2 The Tools of Computational Chemistry
1.3 Putting It All Together
1.4 The Plulosophy of Computational Chemistry
1.5 Summary
References
Easier Questions
Harder Questions
2.The Concept of the Potential Energy Surface
2.1 Perspective
2.2 Stationary Points
2.3 The Born-Oppenheimer Approximation
2.4 Geometry Optimization
2.5 Stationary Points and Normal-Mode Vibrations - Zero Point Energy
2.6 Symmetry
2.7 Summary
References
Easier Questions
Harder Questions
3.Molecular Mecbanics
3.1 Perspective
3.2 The Basic Principles of Molecular Mechanics
3.2.1 Developing a Forcefield
3.2.2 Parameterizing a Forcefield
3.2.3 A Calculation Using Our Forcefield
3.3 Examples of the Use of Molecular Mechanics
3.31 To Obtain Reasonable Input Geometries for Lengthier(Ab Initio, Semiempirical or Density Functional) Kinds of Calculations
3.3.2 To Obtain Good Geometries (and Perhaps Energies)for Small- to Medium-Sized Molecules
3.3.3 To Calculate the Geometries and Energies of Very Large Molecules, Usually Polymeric Biomolecules (Proteins andNucleic Acids)
3.3.4 To Generate the Potential Energy Function Under Which Molecules Move, for Molecular Dynamics or Monte Carlo Calculations
3.3.5 As a (Usually Quick) Gu ide to the Feasibility of, or Likely Outcome of, Reactions in Organic Synthesis
3.4 Geometries Calculated by MM
3.5 Frequencies and Vibrational Spectra Calculated by MM
3.6 Strengths and Weaknesses of Molecular Mechanics
3.61 Strengths
3.62 Weaknesses
3.7 Summary
References
Easier Questions
Harder Questions
4 Introduction to Quantum Mechanics in Computational Chemistry
4.1 Perspective
4.2 The Development of Quantum Mechanics The Schrodinger Equation ,
4.2.1 The Origins of Quantum Theory: Blackbody Radiation and the Photoelectric Effect
4.2.2 Radioactivity
4.2.3 Relativity
4.2.4 The Nuclear Atom
4.2.5 The Bohr Atom N
4.2.6 The Wave Mechanical Atom and the Schrodinger Equation
4.3 The Application of the Schrodinger Equation to Chemistry by Huckel
4.3.1 Introduction
4.3.2 Hybridization
4.3.3 Matrices and Determinants
4.3.4 The Simple Huckel Method - Theory
4.3.5 The Simple Huckel Method - Applications
4.3.6 Strengths and Weaknesses of the Simple Huckel Method
4.3.7 The Determinant Method of Calculating the Huckel c's and Energy Levels
4.4 The Extended Huckel Method
4.4.1 Theory
4.4.2 An Illustration of the EHM: the Ptotonated Helium Molecule
4.4.3 The Extended Huckel Method - Applications
4.4.4 Strengths and Weaknesses of the Extended Huckel Method
4.5. Summary
References
Easier Questions
Harder Questions
5 Ab initio Calculations,N
5.1 Perspective N N
5.2 The Basic Ptinciples of the Ab initio Method
5.2.1 Preliminaries
5.2.2 The Hartree SCF Method
5.2.3 The Hartree-Fock Equations
5.3 Basis Sets
5.3.1 Introduction
5.3.2 Gaussian Functions; Basis Set Preliminaries; Direct SCF
5.3.3 Types of Basis Sets and Their Uses
5.4 Post-Hartree-Fock Calculations: Electron Correlation
5.4.1 Electron Correlation
5.4.2 The MOller-Plesset Approach to Electron Correlation
5.4.3 The Configuration Interaction Approach To Electron Correlation - The Coupled Cluster Method
5.5 Applications of the Ab initio Method
5.5.1 Geometries
5.5.2 Energies
5.5.3 Frequencies and Vibrational Spectra
5.5.4 Properties Arising from Electron Distribution: Dipole Moments, Charges, Bond Orders, Electrostatic Potentials,
Atoms-in-Molecules (AIM)
5.5.5 Miscellaneous Properties - UV and NMR Spectra, Ionization Energies, and Electron Affinities
5.5.6 Visualhation
5.6 Strengths and Weaknesses of Ab initio Calculations
5.6.1 Strengths
5.6.2 Weaknesses
5.7 Summary
References N
Easier Questions
Harder Questions
……
6 Semiempirical Calculations
7 Density Functional Calculations
8 Some "Special" Topics: Solvation, Singlet Diradicals, A Note on Heavy Atoms and Transition Metals
9 Selected Literature Highlights, Books, Websites, Software and Hardware
Answers
Index
1.1 What You Can Do with Computational Chemistry,
1.2 The Tools of Computational Chemistry
1.3 Putting It All Together
1.4 The Plulosophy of Computational Chemistry
1.5 Summary
References
Easier Questions
Harder Questions
2.The Concept of the Potential Energy Surface
2.1 Perspective
2.2 Stationary Points
2.3 The Born-Oppenheimer Approximation
2.4 Geometry Optimization
2.5 Stationary Points and Normal-Mode Vibrations - Zero Point Energy
2.6 Symmetry
2.7 Summary
References
Easier Questions
Harder Questions
3.Molecular Mecbanics
3.1 Perspective
3.2 The Basic Principles of Molecular Mechanics
3.2.1 Developing a Forcefield
3.2.2 Parameterizing a Forcefield
3.2.3 A Calculation Using Our Forcefield
3.3 Examples of the Use of Molecular Mechanics
3.31 To Obtain Reasonable Input Geometries for Lengthier(Ab Initio, Semiempirical or Density Functional) Kinds of Calculations
3.3.2 To Obtain Good Geometries (and Perhaps Energies)for Small- to Medium-Sized Molecules
3.3.3 To Calculate the Geometries and Energies of Very Large Molecules, Usually Polymeric Biomolecules (Proteins andNucleic Acids)
3.3.4 To Generate the Potential Energy Function Under Which Molecules Move, for Molecular Dynamics or Monte Carlo Calculations
3.3.5 As a (Usually Quick) Gu ide to the Feasibility of, or Likely Outcome of, Reactions in Organic Synthesis
3.4 Geometries Calculated by MM
3.5 Frequencies and Vibrational Spectra Calculated by MM
3.6 Strengths and Weaknesses of Molecular Mechanics
3.61 Strengths
3.62 Weaknesses
3.7 Summary
References
Easier Questions
Harder Questions
4 Introduction to Quantum Mechanics in Computational Chemistry
4.1 Perspective
4.2 The Development of Quantum Mechanics The Schrodinger Equation ,
4.2.1 The Origins of Quantum Theory: Blackbody Radiation and the Photoelectric Effect
4.2.2 Radioactivity
4.2.3 Relativity
4.2.4 The Nuclear Atom
4.2.5 The Bohr Atom N
4.2.6 The Wave Mechanical Atom and the Schrodinger Equation
4.3 The Application of the Schrodinger Equation to Chemistry by Huckel
4.3.1 Introduction
4.3.2 Hybridization
4.3.3 Matrices and Determinants
4.3.4 The Simple Huckel Method - Theory
4.3.5 The Simple Huckel Method - Applications
4.3.6 Strengths and Weaknesses of the Simple Huckel Method
4.3.7 The Determinant Method of Calculating the Huckel c's and Energy Levels
4.4 The Extended Huckel Method
4.4.1 Theory
4.4.2 An Illustration of the EHM: the Ptotonated Helium Molecule
4.4.3 The Extended Huckel Method - Applications
4.4.4 Strengths and Weaknesses of the Extended Huckel Method
4.5. Summary
References
Easier Questions
Harder Questions
5 Ab initio Calculations,N
5.1 Perspective N N
5.2 The Basic Ptinciples of the Ab initio Method
5.2.1 Preliminaries
5.2.2 The Hartree SCF Method
5.2.3 The Hartree-Fock Equations
5.3 Basis Sets
5.3.1 Introduction
5.3.2 Gaussian Functions; Basis Set Preliminaries; Direct SCF
5.3.3 Types of Basis Sets and Their Uses
5.4 Post-Hartree-Fock Calculations: Electron Correlation
5.4.1 Electron Correlation
5.4.2 The MOller-Plesset Approach to Electron Correlation
5.4.3 The Configuration Interaction Approach To Electron Correlation - The Coupled Cluster Method
5.5 Applications of the Ab initio Method
5.5.1 Geometries
5.5.2 Energies
5.5.3 Frequencies and Vibrational Spectra
5.5.4 Properties Arising from Electron Distribution: Dipole Moments, Charges, Bond Orders, Electrostatic Potentials,
Atoms-in-Molecules (AIM)
5.5.5 Miscellaneous Properties - UV and NMR Spectra, Ionization Energies, and Electron Affinities
5.5.6 Visualhation
5.6 Strengths and Weaknesses of Ab initio Calculations
5.6.1 Strengths
5.6.2 Weaknesses
5.7 Summary
References N
Easier Questions
Harder Questions
……
6 Semiempirical Calculations
7 Density Functional Calculations
8 Some "Special" Topics: Solvation, Singlet Diradicals, A Note on Heavy Atoms and Transition Metals
9 Selected Literature Highlights, Books, Websites, Software and Hardware
Answers
Index