硬碟接口
ATA 全稱Advanced Technology Attachment,是用傳統的 40-pin 並口數據線連線主機板與硬碟的,外部接口速度最大為133MB/s,因為並口線的抗干擾性太差,且
排線占空間,不利計算機散熱,將逐漸被
SATA所取代。
IDE
IDE的英文全稱為“Integrated Drive Electronics”,即“
電子集成驅動器”,俗稱PATA並口。
使用SATA(Serial ATA)口的硬碟又叫
串口硬碟,是未來PC機硬碟的趨勢。2001年,由Intel、APT、Dell、
IBM、
希捷、
邁拓這幾大廠商組成的Serial ATA委員會正式確立了Serial ATA 1.0規範,2002年,雖然串列ATA的相關設備還未正式上市,但Serial ATA委員會已搶先確立了Serial ATA 2.0規範。Serial ATA採用
串列連線方式,串列ATA匯流排使用
嵌入式時鐘信號,具備了更強的糾錯能力,與以往相比其最大的區別在於能對傳輸指令(不僅僅是數據)進行檢查,如果發現錯誤會自動矯正,這在很大程度上提高了數據傳輸的可靠性。串列接口還具有結構簡單、支持
熱插拔的優點。
SCSI 全稱為Small Computer System Interface(
小型機系統接口),歷經多世代的發展,從早期的 SCSI-II,到 Ultra320 SCSI 以及 Fiber-Channel (
光纖通道),接頭類型也有多種。SCSI 硬碟廣為工作站級
個人計算機以及伺服器所使用,因為它的轉速快,可達 15000 rpm,且數據傳輸時占用 CPU 運算資源較低,但是單價也比同樣容量的 ATA 及 SATA 硬碟昂貴。
SAS(Serial Attached SCSI)是新一代的SCSI技術,和
SATA硬碟相同,都是採取序列式技術以獲得更高的傳輸速度,可達到3Gb/s。此外也透過縮小連線線改善系統內部空間等。
硬碟尺寸
3.5寸台式機硬碟;風頭正勁,廣泛用作各式電腦。
1.8寸
微型硬碟;廣泛用於超薄筆記本電腦,移動硬碟及蘋果播放器。
1.3寸微型硬碟;產品單一,三星獨有技術,僅用於三星的移動硬碟。
1.0寸微型硬碟;最早由
IBM公司開發, MicroDrive微硬碟(簡稱MD)。因符合CFII標準,所以廣泛用於
單眼數位相機。
0.85寸微型硬碟;產品單一,
日立獨有技術,已知僅用於日立的一款硬碟手機。
硬碟的物理結構
硬碟內部結構磁頭是硬碟中最昂貴的部件,也是硬碟技術中最重要和最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬碟的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,從而造成了硬碟設計上的局限。而MR磁頭(Magnetoresistive heads),即磁阻磁頭,採用的是分離式的磁頭結構:寫入磁頭仍採用傳統的磁感應磁頭(MR磁頭不能進行寫操作),讀取磁頭則採用新型的MR磁頭,即所謂的感應寫、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行最佳化,以得到最好的讀/寫性能。另外,MR
磁頭是通過阻值變化而不是電流變化去感應信號幅度,因而對信號變化相當敏感,讀取數據的準確性也相應提高。而且由於讀取的信號幅度與磁軌寬度無關,故磁軌可以做得很窄,從而提高了碟片密度,達到200MB/英寸2,而使用傳統的磁頭只能達到20MB/英寸2,這也是MR磁頭被廣泛套用的最主要原因。MR磁頭已得到廣泛套用,而採用多層結構和
磁阻效應更好的材料製作的GMR磁頭(Giant Magnetoresistive heads)也逐漸普及。
當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。這些磁軌用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會相互產生影響,同時也為磁頭的讀寫帶來困難。一張1.44MB的
3.5英寸軟碟,一面有80個
磁軌,而硬碟上的
磁軌密度則遠遠大於此值,通常一面有成千上萬個磁軌。
3、扇區
磁碟上的每個磁軌被等分為若干個弧段,這些弧段便是磁碟的扇區,每個扇區可以存放512個位元組的信息,
磁碟驅動器在向磁碟讀取和寫入數據時,要以扇區為單位。1.44MB3.5英寸的
軟碟,每個磁軌分為18個扇區。
硬碟通常由重疊的一組碟片構成,每個盤面都被劃分為數目相等的磁軌,並從外緣的“0”開始編號,具有相同編號的磁軌形成一個圓柱,稱之為磁碟的柱面。磁碟的
柱面數與一個盤面上的磁軌數是相等的。由於每個盤面都有自己的
磁頭,因此,盤面數等於總的
磁頭數。所謂硬碟的
CHS,即
Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬碟的CHS的數目,即可確定硬碟的容量,硬碟的容量=柱面數*磁頭數*
扇區數*512B。
1. 硬碟參數釋疑
人們常說的硬碟參數還是古老的 CHS(Cylinder/Head/Sector)參數。那么為什麼要使用這些參數,它們的意義是什麼?它們的取值範圍是什麼?
很久以前, 硬碟的容量還非常小的時候,人們採用與
軟碟類似的結構生產硬碟。也就是硬碟碟片的每一條磁軌都具有相同的扇區數。由此產生了所謂的3D參數 (Disk Geometry). 既
磁頭數(Heads),
柱面數(Cylinders),
扇區數(Sectors),以及相應的
定址方式。
其中:
磁頭數(Heads)表示硬碟總共有幾個
磁頭,也就是有幾面碟片, 最大為 255 (用 8 個
二進制位存儲);
柱面數(Cylinders) 表示硬碟每一面碟片上有幾條磁軌,最大為 1023(用 10 個二進制位存儲);
扇區數(Sectors) 表示每一條磁軌上有幾個扇區, 最大為 63(用 6個二進制位存儲);
每個扇區一般是 512個位元組, 理論上講這不是必須的,但好像沒有取別的值的。
所以磁碟最大容量為:
255 * 1023 * 63 * 512 / 1048576 = 7.837 GB ( 1M =1048576 Bytes )或硬碟廠商常用的單位:
255 * 1023 * 63 * 512 / 1000000 = 8.414 GB ( 1M =1000000 Bytes )
在 CHS
定址方式中,
磁頭,
柱面,扇區的取值範圍分別為 0到 Heads - 1。0 到 Cylinders - 1。 1 到 Sectors (注意是從 1 開始)。
2. 基本 Int 13H 調用簡介
BIOS Int 13H 調用是 BIOS提供的磁碟基本
輸入輸出中斷調用,它可以完成磁碟(包括硬碟和
軟碟)的復位,讀寫,校驗,定位,診,格式化等功能。它使用的就是 CHS 定址方式, 因此最大識能訪問 8 GB 左右的硬碟 (本文中如不作特殊說明,均以 1M = 1048576 位元組為單位)。
3. 現代硬碟結構簡介
在老式硬碟中,由於每個磁軌的
扇區數相等,所以外道的記錄密度要遠低於內道, 因此會浪費很多磁碟空間 (與軟碟一樣)。為了解決這一問題,進一步提高
硬碟容量,人們改用等密度結構生產硬碟。也就是說,外圈磁軌的扇區比內圈磁軌多,採用這種結構後,硬碟不再具有實際的3D參數,
定址方式也改為線性定址,即以扇區為單位進行
定址。
為了與使用3D定址的老軟體兼容 (如使用BIOSInt13H接口的軟體), 在
硬碟控制器內部安裝了一個地址
翻譯器,由它負責將老式3D參數翻譯成新的線性參數。這也是為什麼硬碟的3D參數可以有多種選擇的原因(不同的工作模式,對應不同的3D參數, 如 LBA,LARGE,NORMAL)。
4. 擴展 Int 13H 簡介
雖然現代硬碟都已經採用了線性定址,但是由於基本 Int13H 的制約,使用 BIOS Int 13H 接口的程式, 如 DOS 等還只能訪問 8 G以內的硬碟空間。為了打破這一限制, Microsoft 等幾家公司制定了擴展 Int 13H 標準(Extended Int13H),採用線性
定址方式存取硬碟, 所以突破了 8 G的限制,而且還加入了對可拆卸介質 (如活動硬碟) 的支持。
硬碟的基本參數
一、容量
作為計算機系統的數據
存儲器,容量是硬碟最主要的參數。
硬碟的容量以
兆位元組(MB)或千兆位元組(GB)為單位,1GB=1024MB。但硬碟廠商在標稱
硬碟容量時通常取1G=1000MB,因此我們在BIOS中或在格式化硬碟時看到的容量會比廠家的標稱值要小。
硬碟的容量指標還包括硬碟的
單碟容量。所謂單碟容量是指硬碟單片碟片的容量,單碟容量越大,單位成本越低,
平均訪問時間也越短。
對於用戶而言,硬碟的容量就象記憶體一樣,永遠只會嫌少不會嫌多。Windows作業系統帶給我們的除了更為簡便的操作外,還帶來了檔案大小與數量的日益膨脹,一些應用程式動輒就要吃掉上百兆的硬碟空間,而且還有不斷增大的趨勢。因此,在購買硬碟時適當的超前是明智的。近兩年主流硬碟是80G,而160G以上的大容量硬碟亦已開始逐漸普及。
一般情況下
硬碟容量越大,單位位元組的價格就越便宜,但是超出主流容量的硬碟略微例外。時至2008年12月初,
1TB(1000GB)的
希捷硬碟中關村報價是¥700元,500G的硬碟大概是¥320元。
二、轉速
轉速(Rotationl Speed 或Spindle speed),是硬碟內電機主軸的旋轉速度,也就是硬碟碟片在一分鐘內所能完成的最大轉數。轉速的快慢是標示硬碟檔次的重要參數之一,它是決定硬碟內部傳輸率的關鍵因素之一,在很大程度上直接影響到硬碟的速度。硬碟的轉速越快,硬碟尋找檔案的速度也就越快,相對的硬碟的傳輸速度也就得到了提高。
硬碟轉速以每分鐘多少轉來表示,單位表示為RPM,RPM是Revolutions Per minute的縮寫,是轉/每分鐘。RPM值越大,內部傳輸率就越快,訪問時間就越短,硬碟的整體性能也就越好。
硬碟的主軸馬達帶動碟片高速旋轉,產生浮力使
磁頭飄浮在碟片上方。要將所要存取資料的扇區帶到磁頭下方,轉速越快,則等待時間也就越短。因此轉速在很大程度上決定了硬碟的速度。
家用的普通硬碟的轉速一般有5400rpm、7200rpm幾種,高轉速硬碟也是台式機用戶的首選;而對於筆記本用戶則是4200rpm、5400rpm為主,雖然已經有公司發布了7200rpm的
筆記本硬碟,但在市場中還較為少見;伺服器用戶對硬碟性能要求最高,伺服器中使用的
SCSI硬碟轉速基本都採用10000rpm,甚至還有15000rpm的,性能要超出家用產品很多。較高的轉速可縮短硬碟的平均
尋道時間和實際讀寫時間,但隨著
硬碟轉速的不斷提高也帶來了溫度升高、電機主軸磨損加大、工作噪音增大等負面影響。筆記本硬碟轉速低於台式機硬碟,一定程度上是受到這個因素的影響。筆記本內部空間狹小,筆記本硬碟的尺寸(2.5寸)也被設計的比台式機硬碟(3.5寸)小,轉速提高造成的溫度上升,對筆記本本身的散熱性能提出了更高的要求;噪音變大,又必須採取必要的降噪措施,這些都對
筆記本硬碟製造技術提出了更多的要求。同時轉速的提高,而其它的維持不變,則意味著電機的功耗將增大,單位時間內消耗的電就越多,電池的工作時間縮短,這樣筆記本的便攜性就受到影響。所以筆記本硬碟一般都採用相對較低轉速的4200rpm硬碟。
轉速是隨著硬碟電機的提高而改變的,
液態軸承馬達(Fluid dynamic bearing motors)已全面代替了傳統的
滾珠軸承馬達。液態軸承馬達通常是套用於精密機械工業上,它使用的是黏膜液油軸承,以油膜代替滾珠。這樣可以避免金屬面的直接摩擦,將噪聲及溫度被減至最低;同時油膜可有效吸收震動,使抗震能力得到提高;更可減少磨損,提高壽命。
平均訪問時間(Average Access Time)是指
磁頭從起始位置到達目標磁軌位置,並且從目標磁軌上找到要讀寫的數據扇區所需的時間。
硬碟的
平均尋道時間(Average Seek Time)是指硬碟的磁頭移動到盤面指定磁軌所需的時間。這個時間當然越小越好,目盤的平均尋道時間通常在8ms到12ms之間,而
SCSI硬碟則應小於或等於8ms。
硬碟的等待時間,又叫潛伏期(Latency),是指
磁頭已處於要訪問的磁軌,等待所要訪問的扇區旋轉至磁頭下方的時間。平均等待時間為碟片旋轉一周所需的時間的一半,一般應在4ms以下。
內部傳輸率(Internal Transfer Rate) 也稱為持續傳輸率(Sustained Transfer Rate),它反映了硬碟緩衝區未用時的性能。內部傳輸率主要依賴於硬碟的旋轉速度。
外部傳輸率(External Transfer Rate)也稱為突發數據傳輸率(Burst Data Transfer Rate)或接口傳輸率,它標稱的是
系統匯流排與硬碟緩衝區之間的數據傳輸率,外部數據傳輸率與
硬碟接口類型和硬碟快取的大小有關。
Fast ATA接口硬碟的最大外部傳輸率為16.6MB/s,而Ultra ATA接口的硬碟則達到33.3MB/s。
使用
SATA(Serial ATA)口的硬碟又叫
串口硬碟,是未來PC機硬碟的趨勢。2001年,由Intel、APT、Dell、
IBM、
希捷、
邁拓這幾大廠商組成的Serial ATA委員會正式確立了Serial ATA 1.0規範。2002年,雖然串列ATA的相關設備還未正式上市,但Serial ATA委員會已搶先確立了Serial ATA 2.0規範。Serial ATA採用
串列連線方式,串列ATA匯流排使用
嵌入式時鐘信號,具備了更強的糾錯能力,與以往相比其最大的區別在於能對傳輸指令(不僅僅是數據)進行檢查,如果發現錯誤會自動矯正,這在很大程度上提高了數據傳輸的可靠性。串列接口還具有結構簡單、支持
熱插拔的優點。
串口硬碟是一種完全不同於並行ATA的新型
硬碟接口類型,由於採用串列方式傳輸數據而知名。相對於並行ATA來說,就具有非常多的優勢。首先,Serial ATA以連續串列的方式傳送數據,一次只會傳送1位數據。這樣能減少
SATA接口的針腳數目,使連線電纜數目變少,效率也會更高。實際上,Serial ATA 僅用四支針腳就能完成所有的工作,分別用於連線電纜、連線地線、傳送數據和接收數據,同時這樣的架構還能降低系統能耗和減小系統複雜性。其次,Serial ATA的起點更高、發展潛力更大,Serial ATA 1.0定義的
數據傳輸率可達150MB/s,這比最快的並行ATA(即ATA/133)所能達到133MB/s的最高數據傳輸率還高,而在Serial ATA 2.0的數據傳輸率達到300MB/s,最終
SATA將實現600MB/s的最高數據傳輸率。
五、快取
快取(Cache memory)是
硬碟控制器上的一塊
記憶體晶片,具有極快的
存取速度,它是硬碟內部存儲和外界接口之間的緩衝器。由於硬碟的內部數據傳輸速度和外界介面傳輸速度不同,快取在其中起到一個緩衝的作用。快取的大小與速度是直接關係到硬碟的傳輸速度的重要因素,能夠大幅度地提高硬碟整體性能。當硬碟存取零碎數據時需要不斷地在硬碟與記憶體之間交換數據,有大快取,則可以將那些零碎數據暫存在快取中,減小外系統的負荷,也提高了數據的傳輸速度