介紹
頻率範圍很寬,
頻率穩定度在10-4~10-12範圍內,經校準一年內可保持10-9的準確度,高質量的石英晶體
振盪器,在經常校準時,頻率準確可達10-11.高效能模擬與混合
信號IC廠商Silicon Laboratories(芯科實驗室有限公司)日前推出業界第一款支持輸出頻率可程式的振盪器(XO)和壓控振盪器(VCXO)。Si570/1系列採用公司專利的DSPLL技術和業界標準的I2C接口,通過對I2C接口的操作,一顆器件就能產生10MHz到1.4GHz的任何輸出頻率,同時將均方根抖動幅度減少到0.3ps左右。Si570任意頻率XO和Si571任意頻率VCXO最適合需要彈性頻率源的高效能套用,包括下一代網路設備、無線基站,測試與測量裝置、高畫質電視
視頻基礎設施和高速數據採集裝置!
硬體設計人員過去必須用多個固定頻率XO、VCXO或壓控SAW振盪器(VCSO),才能開發出複雜系統所需的可變頻率架構,並讓它們以不同頻率操作。但這種方法的成本很高,需要複雜的模擬鎖相迴路(PLL)設計和布局,還會延長新
開發產品的上市時間。
Si570/1可程式XO和VCXO的彈性振盪器能產生10MHz到1.4GHz的任何頻率,使得一顆器件就能取代多個固定頻率振盪器,不僅簡化鎖相迴路的設計與布局,還大幅減少
元器件數目、系統成本和電路板面積。另外,由於Si570/1省下多個原本可能成為故障點的固定頻率振盪器,所以系統會變得更可靠。
Si570/1能通過業界標準的I2C接口設定操作頻率,這使器件的編程設定和重新配置變得更簡單。Si570/1還能不限次數重新編程,讓系統設計人員將同一套
時鐘頻率架構重複用於不同的最終套用,這能簡化設計和加速上市時間。Si570/1採用業界標準和RoHS兼容的5×7毫米表面貼裝封裝,並支持所有常見的輸出信號格式(LVPECL、LVDS、CMOS和CML)。此系列包含三種不同速度等級的器件,分別是10MHz-1.4GHz、10-810MHz和10-215MHz。Si570任意頻率
石英振盪器還有±20ppm和±50ppm兩種不同的
溫度穩定性規格可供選擇,Si571任意頻率壓控石英振盪器則包含從±12ppm到±375ppm等多種不同壓控範圍(Absolute Pull Range)的器件,以便設計人員彈性選擇最適合其套用的器件。Si570/1的操作溫度範圍都是從-40至+85℃。
可選頻率範圍:我們所能提供的某種規格的振盪器的可實現的頻率輸出。
頻率溫度穩定度:在指定溫度範圍內振盪器的輸出頻率相對於25°C時測量值的最大允許
頻率偏差。
老化:在確定時間內輸出頻率的相對變化。
輸出:振盪器輸出的波形及功率。
占空比:反映輸出波形的對稱性,也就說,在一個周期內,高電平與低電平所占比例之比。
下降時間:方波從高電平轉換為低電平的時間。
諧波:振盪器在相對於輸出頻率諧振點處的抑制。非諧波:振盪器在相對於輸出頻率非諧振點處的抑制。
短期頻率穩定度:振盪器在較短時間內輸出頻率的穩定性,通常為1秒。
相位噪聲:用於描述振盪器的短期頻率波動,通常定義為載波發生某一頻率偏移是在1Hz頻寬內的單邊帶功率密度,單位為dBc/Hz。
電源
電壓:加在振盪器電源端(Vcc)的能夠使振盪器正常工作的電壓。
工作溫度範圍:能夠保證振盪器輸出頻率及其它各種特性能滿座指標要求的溫度範圍。
石英晶體振盪器特點
z 在振盪頻率上,閉合迴路的相移為2nπ。
z 當開始加電時,
電路中的信號是
噪聲。滿足振盪
相位條件的頻率噪聲分量以增
大的幅度在迴路中傳輸,增大的速率由附加分量,即小信號,迴路益增和晶體網路
的頻寬決定。
z 幅度繼續增大,直到放大器增益因有源器件(自限幅)的非線性而減小或者由於某
一自動電平控制而被減小。
z 在穩定狀態下,閉合迴路的增益為1。石英諧振器按引出電極情況來分有雙電極型、三電極型和雙對電極型幾種。圖l為雙電極型石英諧振器的外形,儘管它們的
體積有大有小、固有振盪頻率有高有低,但在電路圖中均用圖1(b)符號表示。三電極型和雙對電極型石英諧振器的符號見圖。2。
,如彩電的色副載波振盪器、電子鐘錶的時基振盪器及遊戲機中的
時鐘脈衝振盪器等,
石英晶體成本較高,故在要求不太高的電路中一般採用
陶瓷諧振元件。
概況
晶振全稱為
晶體振盪器,其作用在於產生原始的
時鐘頻率,這個頻率經過頻率發生器的放大或縮小後就成了電腦中各種不同的匯流排頻率。以音效卡為例,要實現對模擬信號44.1kHz或48kHz的採樣,頻率發生器就必須提供一個44.1kHz或48kHz的時鐘頻率。如果需要對這兩種音頻同時支持的話,
音效卡就需要有兩顆晶振。但是娛樂級
音效卡為了降低成本,通常都採用SRC將輸出的採樣頻率固定在48kHz,但是SRC會對音質帶來損害,
晶體諧振器,是一種機電器件,是用電損耗很小的石英晶體經精密切割磨削並鍍上電極焊上引線做成。這種晶體有一個很重要的特性,如果給它通電,它就會產生機械振盪,反之,如果給它機械力,它又會產生電,這種特性叫
壓電效應。他們有一個很重要的特點,其振盪頻率與他們的形狀,材料,切割方向等密切相關。由於石英晶體化學性能非常穩定,熱膨脹係數常小,其振盪頻率也非常穩定,由於控制幾何尺寸可以做到很精密,因此,其諧振頻率也很準確。根據石英晶體的機電效應,我們可以把它等效為一個電磁振盪迴路,即諧振迴路。他們的機電效應是機-電-機-電..的不斷轉換,由電感和電容組成的諧振迴路是電場-
磁場的不斷轉換。在電路中的套用實際上是把它當作一個高Q值的電磁諧振迴路。由於石英晶體的損耗非常小,即Q值非常高,做振盪器用時,可以產生非常穩定的振盪,作濾波器用,可以獲得非常穩定和陡削的帶通或帶阻曲線。
參數
參數
| 基本描述
|
| 在標稱電源電壓、標稱負載阻抗、基準溫度(25℃)以及其他條件保持不變,晶體振盪器的頻率相對與其規定標稱值的最大允許偏差,即(fmax-fmin)/f0;
|
溫度穩定度
| 其他條件保持不變,在規定溫度範圍內晶體振盪器輸出頻率的最大變化量相對於溫度範圍內輸出頻率極值之和的允許頻偏值,即(fmax-fmin)/(fmax+fmin);
|
頻率調節範圍
| 通過調節晶振的某可變元件改變輸出頻率的範圍。
|
| 包括調頻頻偏、調頻靈敏度、調頻線性度。 ①調頻頻偏:壓控晶體振盪器控制電壓由標稱的最大值變化到最小值時輸出頻率差。 ②調頻靈敏度:壓控晶體振盪器變化單位外加控制電壓所引起的輸出頻率的變化量。 ③調頻線性度:是一種與理想直線(最小二乘法)相比較的調製系統傳輸特性的量度。
|
| 其他條件保持不變,負載在規定變化範圍內晶體振盪器輸出頻率相對於標稱負載下的輸出頻率的最大允許頻偏。
|
電壓特性
| 其他條件保持不變,電源電壓在規定變化範圍內晶體振盪器輸出頻率相對於標稱電源電壓下的輸出頻率的最大允許頻偏。
|
雜波
| 輸出信號中與主頻無諧波(副諧波除外)關係的離散頻譜分量與主頻的功率比,用dBc表示。
|
諧波
| 諧波分量功率Pi與載波功率P0之比,用dBc表示。
|
頻率老化
| 在規定的環境條件下,由於元件(主要是石英諧振器)老化而引起的輸出頻率隨時間的系統漂移過程。通常用某一時間間隔內的頻差來量度。對於高穩定晶振,由於輸出頻率在較長的工作時間內呈近似線性的單方向漂移,往往用老化率(單位時間內的相對頻率變化)來量度。
|
日波動
| 指振盪器經過規定的預熱時間後,每隔一小時測量一次,連續測量24小時,將測試數據按S=(fmax-fmin)/f0式計算,得到日波動。
|
開機特性
| 在規定的預熱時間內,振盪器頻率值的最大變化,用V=(fmax-fmin)/f0表示。
|
| 短期穩定度的頻域量度。用單邊帶噪聲與載波噪聲之比£(f)表示,£(f)與噪聲起伏的頻譜密度Sφ(f)和頻率起伏的頻譜密度Sy(f)直接相關,由下式表示: f2S(f)=f02Sy(f)=2f2£(f) f—傅立葉頻率或偏離載波頻率;f0—載波頻率。
|
分類
晶體振盪器也分為
無源晶振和
有源晶振兩種類型。無源晶振與有源晶振(諧振)的英文名稱不同,無源晶振為crystal(晶體),而有源晶振則叫做oscillator(振盪器)。無源晶振需要藉助於時鐘電路才能產生振盪信號,自身無法振盪起來,所以“無源晶振”這個說法並不準確;有源晶振是一個完整的諧振振盪器。石英晶體振盪器與石英晶體諧振器都是提供穩定電路頻率的一種電子器件。石英晶體振盪器是利用石英晶體的壓電效應來起振,而石英晶體諧振器是利用石英晶體和內置IC共同作用來工作的。振盪器直接套用於電路中,諧振器工作時一般需要提供3.3V電壓來維持工作。振盪器比諧振器多了一個重要技術參數:諧振電阻(RR),諧振器沒有電阻要求。RR的大小直接影響電路的性能,因此這是各商家競爭的一個重要參數。
原理
PXO工作原理
放大網路----- 對所加的信號進行放大; 反饋網路------相位校正網路
振盪電路的兩項條件:
1、電路的閉環增益必須等於1,這可以通過放大器網路的自限幅特性實現;
2、圍繞電路的網路相移量必須等於2πn,通常n為1或2。
VCXO工作原理
VCX由石英諧振器、變容二極體和振盪電路組成,通過控制變容二極體的電壓來改變變容二極體的電容,從而“牽引”石英諧振器的頻率,以達到頻率調製的目的。
技術規範:控制電壓–交流信號時,也稱調製電壓
壓控範圍 -電壓變化範圍內的頻率變化量
壓控極性 – 隨電壓的增加而上升的極性為“+”,反之為“-”
線性度 -頻率偏移( error)與壓控範圍的比例
TCXO工作原理
基本上是一個VCXO和溫度補償網路構成,補償網路有熱敏電阻等組成,通過調節不同溫度下變容二級管的電壓來改變晶體的負載,從而調整晶體的頻率。
變容二極體反向電壓的溫度特性控制方法
1~3個熱敏電阻構成的網路
數字邏輯器件或微處理器依據寫入memory中的晶體的F/T特性值,計算並通過D/A器件發出。0.1 PPM的準確度可以達到,但1 PPM是批量生產的分水嶺。
功用
晶振在套用具體起到的作用,微控制器的時鐘源可以分為兩類:基於機械諧振器件的時鐘源,如晶振、
陶瓷諧振槽路;RC(電阻、
電容)振盪器。一種是皮爾斯振盪器配置,適用於晶振和陶瓷諧振槽路。另一種為簡單的分立RC振盪器。基於晶振與陶瓷諧振槽路的振盪器通常能提供非常高的初始精度和較低的溫度係數。RC振盪器能夠快速啟動,成本也比較低,但通常在整個溫度和工作電源電壓範圍內精度較差,會在標稱輸出頻率的5%至50%範圍內變化。但其性能受環境條件和電路元件選擇的影響。需認真對待振盪器電路的元件選擇和
線路板布局。在使用時,陶瓷諧振槽路和相應的負載電容必須根據特定的邏輯系列進行最佳化。具有高Q值的晶振對放大器的選擇並不敏感,但在過驅動時很容易產生頻率
漂移(甚至可能損壞)。影響振盪器工作的環境因素有:
電磁干擾(EMI)、機械震動與衝擊、濕度和溫度。這些因素會增大輸出頻率的變化,增加不穩定性,並且在有些情況下,還會造成振盪器停振。上述大部分問題都可以通過使用振盪器模組避免。這些模組自帶振盪器、提供低阻方波輸出,並且能夠在一定條件下保證運行。最常用的兩種類型是晶振模組和集成RC振盪器(矽振盪器)。晶振模組提供與分立晶振相同的精度。矽振盪器的精度要比分立RC振盪器高,多數情況下能夠提供與陶瓷諧振槽路相當的精度。 選擇振盪器時還需要考慮功耗。分立振盪器的功耗主要由反饋放大器的電源電流以及電路內部的電容值所決定。CMOS放大器功耗與工作頻率成正比,可以表示為功率耗散電容值。比如,HC04反相器門電路的功率耗散電容值是90pF。在4MHz、5V電源下工作時,相當於1.8mA的電源電流。再加上20pF的晶振負載電容,整個電源電流為2.2mA。陶瓷諧振槽路一般具有較大的負載電容,相應地也需要更多的電流。相比之下,晶振模組一般需要電源電流為10mA ~60mA。矽振盪器的電源
電流取決於其類型與功能,範圍可以從低頻(固定)器件的幾個
微安到可程式器件的幾個毫安。一種低功率的矽振盪器,如MAX7375,工作在4MHz時只需不到2mA的電流。 在特定的套用場合最佳化時鐘源需要綜合考慮以下一些因素:
精度、成本、功耗以及環境需求。
發展趨勢
1、小型化、薄片化和片式化:為滿足行動電話為代表的攜帶型產品輕、薄、短小的要求,石英晶體振盪器的封裝由傳統的裸金屬外殼覆塑膠金屬向陶瓷封裝轉變。例如TCXO這類器件的體積縮小了30~100倍。採用SMD封裝的TCXO厚度不足2mm,5×3mm尺寸的器件已經上市。
2、高精度與高穩定度,無補償式晶體振盪器總精度也能達到±25ppm,VCXO的頻率穩定度在10~7℃範圍內一般可達±20~100ppm,而OCXO在同一溫度範圍內頻率穩定度一般為±0.0001~5ppm,VCXO控制在±25ppm以下。
3、低噪聲,高頻化,在GPS通信系統中是不允許頻率顫抖的,相位噪聲是表征振盪器頻率顫抖的一個重要參數。OCXO主流產品的相位噪聲性能有很大改善。除VCXO外,其它類型的晶體振盪器最高輸出頻率不超過200MHz。例如用於GSM等行動電話的UCV4系列壓控振盪器,其頻率為650~1700MHz,電源電壓2.2~3.3V,工作電流8~10mA。
4、低功能,快速啟動,低電壓工作,低電平驅動和低電流消耗已成為一個趨勢。電源電壓一般為3.3V。許多TCXO和VCXO產品,電流損耗不超過2mA。石英晶體振盪器的快速啟動技術也取得突破性進展。例如日本精工生產的VG—2320SC型VCXO,在±0.1ppm規定值範圍條件下,頻率穩定時間小於4ms。日本
東京陶瓷公司生產的SMDTCXO,在振盪啟動4ms後則可達到額定值的90%。OAK公司的10~25MHz的OCXO產品,在預熱5分鐘後,則能達到±0.01ppm的穩定度。
種類
石英晶體振盪器
石英晶體振盪器是利用石英晶體(
二氧化矽的結晶體)的壓電效應製成的一種諧振器件,它的基本結構大致是從一塊石英晶體上按一定方位角切下薄片(簡稱為晶片,它可以是正方形、矩形或圓形等),在它的兩個對應面上塗敷
銀層作為電極,在每個電極上各焊一根引線接到管腳 上,再加上封裝外殼就構成了石英晶體諧振器,簡稱為石英晶體或晶體、晶振。其產品一般用金屬外殼封裝,也有用
玻璃殼、陶瓷或
塑膠封裝的。石英晶體的壓電效應:若在石英晶體的兩個電極上加一電場,晶片就會產生機械變形。反之,若在晶片的兩側施加機械壓力,則在晶片相應的方向上將產生電場,這種
物理現象稱為
壓電效應。注意,這種效應是可逆的。如果在晶片的兩極上加交變電壓,晶片就會產生機械振動,同時晶片的機械振動又會產生交變電場。在一般情況下,晶片機械振動的振幅和交變電場的振幅非常微小,但當外加交變電壓的頻率為某一特定值時,振幅明顯加大,比其他頻率下的振幅大得多,這種現象稱為壓電諧振,它與
LC迴路的諧振現象十分相似。它的諧振頻率與晶片的切割方式、幾何形狀、尺寸等有關。 石英晶體振盪器分非溫度補償式晶體振盪器、
溫度補償晶體振盪器(TCXO)、電壓控制晶體振盪器(VCXO)、恆溫控制式晶體振盪器(OCXO)和數位化/μp補償式晶體振盪器(DCXO/MCXO)等幾種類型。其中,無溫度補償式晶體振盪器是最簡單的一種,在日本工業標準(JIS)中,稱其為標準封裝晶體振盪器(SPXO)。現以SPXO為 例,簡要介紹一下石英晶體振盪器的結構與工作原理。
石英晶體,有天然的也有人造的,是一種重要的壓電晶體材料。石英晶體本身並非振盪器,它只有藉助於有源激勵和無源電抗網路方可產生振盪。SPXO主要是由品質因數(Q)很高的晶體諧振器(即晶體振子)與反饋式振盪電路組成的。石英晶體振子是振盪器中的重要元件,晶體的頻率(基頻或n次諧波頻率)及其溫度特性在很大程度上取決於其切割取向。石英晶體諧振器的基本結構、(金屬殼)封裝及其等效電路。只要在晶體振子板極上施加交變電壓,就會使晶片產生機械變形振動,此現象即所謂逆壓電效應。當外加電壓頻率等於晶體諧振器的固有頻率時,就會發生壓電諧振,從而導致機械變形的振幅突然增大。
石英晶體振盪器的套用:1、石英鐘走時準、耗電省、經久耐用為其最大優點。不論是老式石英鐘或是新式多功能石英鐘都是以石英晶體振盪器為核心電路,其頻率精度決定了電子鐘錶的走時精度。石英晶體振盪器原理的示意如圖3所示,其中V1和V2構成CMOS反相器石英晶體Q與振盪電容C1及微調電容C2構成振盪系統,這裡石英晶體相當於電感。振盪系統的元件參數確定了振頻率。一般Q、C1及C2均為外接元件。另外R1為反饋電阻,R2為振盪的穩定電阻,它們都集成在電路內部。故無法通過改變C1或C2的數值來調整走時精度。但此時仍可用加接一隻電容C有方法,來改變振盪系統參數,以調整走時精度。根據電子鐘錶走時的快慢,調整電容有兩種接法:若走時偏快,則可在石英晶體兩端並接電容C,如圖4所示。此時系統總電容加大,振盪頻率變低,走時減慢。若走時偏慢,則可在晶體支路中串接電容C。如圖5所示。此時系統的總電容減小,振盪頻率變高,走時增快。只要經過耐心的反覆試驗,就可以調整走時精度。因此,晶振可用於時鐘信號發生器。 2、隨著電視技術的發展,彩電多採用500kHz或503kHz的晶體振盪器作為行、場電路的振盪源,經1/3的分頻得到15625Hz的行頻,其穩定性和可靠性大為提高。面且晶振價格便宜,更換容易。
3、在通信系統產品中,石英晶體振盪器的價值得到了更廣泛的體現,同時也得到了更快的發展。許多高性能的石英晶振主要套用於通信網路、無線數據傳輸、高速數字數據傳輸等。
溫度補償晶體振盪器溫度補償晶體振盪器(TCXO)是通過附加的溫度補償電路使由周圍溫度變化產生的振盪頻率變化量削減的一種石英晶體振盪器。TCXO中,對石英晶體振子頻率溫度漂移的補償方法主要有直接補償和間接補償兩種類型:
(1)直接補償型 直接補償型TCXO是由
熱敏電阻和阻容元件組成的溫度補償電路,在振盪器中與石英晶體振子串聯而成的。在溫度變化時,熱敏電阻的阻值和晶體等效串聯電容容值相應變化,從而抵消或削減振盪頻率的
溫度漂移。該補償方式電路簡單,成本較低,節省印製電路板(PCB)尺寸和空間,適用於小型和低壓小電流場合。但當要求晶體振盪器精度小於±1pmm時,直接補償方式並不適宜。
(2)間接補償型 間接補償型又分模擬式和數字式兩種類型。模擬式間接溫度補償是利用熱敏電阻等溫度感測元件組成溫度-電壓變換電路,並將該電壓施加到一支與晶體振子相串接的變容二極體上,通過晶體振子串聯電容量的變化,對晶體振子的非線性頻率漂移進行補償。該補償方式能實現±0.5ppm的高精度,但在3V以下的低電壓情況下受到限制。數位化間接溫度補償是在模擬式補償電路中的溫度—電壓變換電路之後再加一級模/數(A/D)變換器,將模擬量轉換成數字量。該法可實現自動溫度補償,使晶體振盪器頻率穩定度非常高,但具體的補償電路比較複雜,成本也較高,只適用於基地站和
廣播電台等要求高精度化的情況。
TCXO發展現狀TCXO在近十幾年中得到長足發展,其中在精密TCXO的研究開發與生產方面,日本居領先和主宰地位。在70年代末汽車電話用TCXO的體積達20 以上,主流產品降至0.4 ,超小型化的TCXO器件體積僅為0.27 。在30年中,TCXO的
體積縮小了50餘倍乃至100倍。日本京陶瓷公司採用回流焊接方法生產的表面貼裝TCXO厚度由4mm降至2mm,在振盪啟動4ms後即可達到額定振盪幅度的90%。金石(KSS)集團生產的TCXO頻率範圍為2~80MHz,溫度從-10℃到60℃變化時的穩定度為±1ppm或±2ppm;數字式TCXO的頻率覆蓋範圍為0.2~90MHz,頻率穩定度為±0.1ppm(-30℃~+85℃)。日本東澤通信機生產的TCO-935/937型片式直接溫補型TCXO,頻率溫度特性(點頻15.36MHz)為±1ppm/-20~+70℃,在5V±5%的電源電壓下的頻率電壓特性為±0.3ppm,輸出正弦波波形(幅值為1VPP),電流損耗不足2mA,體積1 ,
重量僅為1g。PiezoTechnology生產的X3080型TCXO採用表面貼裝和穿孔兩種封裝,正弦波或邏輯輸出,在-55℃~85℃範圍內能達到±0.25~±1ppm的精度。國內的產品水平也較高,如北京瑞華欣科技開發有限公司推出的TCXO(32~40MHz)在室溫下精度優於±1ppm,第一年的頻率老化率為±1ppm,頻率(機械)微調≥±3ppm,電源功耗≤120mw。高穩定度的TCXO器件,精度可達±0.05ppm。
高精度、低功耗和小型化,仍然是TCXO的研究課題。在小型化與片式化方面,面臨不少困難,其中主要的有兩點:一是小型化會使石英晶體振子的頻率可變幅度變小,溫度補償更加困難;二是片式封裝後在其回流
焊接作業中,由於焊接溫度遠高於TCXO的最大允許溫度,會使晶體振子的頻率發生變化,若不採限局部散熱降溫措施,難以將TCXO的頻率變化量控制在±0.5×10-6以下。但是,TCXO的技術水平的提高並沒進入到極限,創新的內容和潛力仍較大。
TCXO的套用
石英晶體振盪器的發展及其在無線系統中的套用,由於TCXO具有較高的頻率穩定度,而且體積小,在小電流下能夠快速啟動,其套用領域重點擴展到
移動通信系統。TCXO作為基準振盪器為傳送信道提供頻率基準,同時作為接收通道的第一級本機振盪器;另一隻TCXO作為第2級本機振盪器,將其振盪信號輸入到第2變頻器。行動電話要求的頻率穩定度為0.1~2.5ppm(-30~+75℃),但出於成本上的考慮,通常選用的規格為1.5~2.5ppm。行動電話用12~20MHz的TCXO代表性產品之一是VC-TCXO-201C1,採用直接補償方式,,由
日本金石(KSS)公司生產。
套用: 測試設備
頻率範圍: 1MHz-160MHz
常用頻點: 4 5 5.12 6 6.4 8.192 9.216 10 10.24 12 12.8 13 14.4 15.36 16.38 16.384 19.44 19.68 19.8 20 30.72 32.768 36.864 38.88 40 52 50 77.76 80 100 155.52
外形圖:
電壓控制晶體振盪器電壓控制晶體振盪器(VCXO),是通過施加外部控制電壓使振盪頻率可變或是可以調製的石英晶體振盪器。在典型的VCXO中,通常是通過調諧電壓改變變容
二極體的電容量來“牽引”石英晶體振子頻率的。VCXO允許頻率控制範圍比較寬,實際的牽引度範圍約為±200ppm甚至更大。如果要求VCXO的輸出頻率比石英晶體振子所能實現的頻率還要高,可採用倍頻方案。擴展調諧範圍的另一個方法是將晶體振盪器的輸出信號與VCXO的輸出
信號混頻。與單一的振盪器相比,這種外差式的兩個振盪器信號調諧範圍有明顯擴展。 在移動通信基地站中作為高精度基準信號源使用的VCXO代表性產品是日本精工·愛普生公司生產的VG-2320SC。這種採用與IC同樣塑封的4引腳器件,內裝單獨開發的專用IC,器件尺寸為12.6mm×7.6mm×1.9mm,體積為0.19 。其標準頻率為12~20MHz,電源電壓為3.0±0.3V,工作電流不大於2mA,在-20~+75℃範圍內的頻率穩定度≤±1.5ppm,頻率可變範圍是±20~±35ppm,啟動振盪時間小於4ms。金石集團生產的VCXO,頻率覆蓋範圍為10~360MHz,頻率牽引度從±60ppm到±100ppm。VCXO封裝發展趨勢是朝SMD方向發展,並且在電源電壓方面儘可能採用3.3V。日本東洋通信機生產的TCO-947系列片式VCXO,早在90年代中期前就套用於汽車
電話系統。該系列VCXO的工作頻率點是12.8MHz、13MHz、14.5MHz和15.36MHz,頻率溫度特性±2.5ppm/-30~+75℃,頻率電壓特性±0.3ppm/5V±5%,老化特性±1ppm/年,內部採用SMD/SMC,並採用雷射束和汽相點焊方式封裝,高度為4mm。日本富士電氣化學公司開發的個人手持電話系統(PHS)等移動通信用VCXO,共有兩大類六個系列,為適應SMT要求,全部採用SMD封裝。Saronix的S1318型、Vectron國際公司的J型、Champion技術公司的K1526型和Fordahi公司的DFVS1-KH/LH等VCXO,均是表面貼裝器件,電源電壓為3.3V或5V,可覆蓋的頻率範圍或最高頻率分別為32~120MHz、155MHz、2~40MHz和1-50MHz,牽引度從±25ppm到±150ppm不等。MF電子公司生產的T-VCXO系列產品尺寸為5mm×7mm,曾被業內認為是外形尺寸最小的產品,但這個小型化的記錄很快被打破。新推出的雙頻終端機用VCXO尺寸僅為5.8mm×4.8mm,並且有的內裝2隻VCXO。Raltron電子公司生產的VX-8000系。
套用: 移頻直放站、測試設備、蜂窩基站
頻率範圍: 1MHz-200MHz
常用頻點: 12.8 13 15.36 16.38 16.384 18.432 19.44 20 30.72 32.768 36.864 38.88 40 44.545 51.2 58.078 65 70 73.6 100 107.374 120 131.04 135.56
外形圖:
恆溫控制晶體振盪器恆溫控制晶體振盪器(OCXO)是利用
恆溫槽使晶體振盪器或石英晶體振子的溫度保持恆定,將由周圍溫度變化引起的振盪器輸出頻率變化量削減到最小的晶體振盪器,其內部結構如圖4所示。在OCXO中,有的只將石英晶體振子置於恆溫槽中,有的是將石英晶體振子和有關重要元器件置於恆溫槽中,還有的將石英晶體振子置於內部的恆溫槽中,而將振盪電路置於外部的恆溫槽中進行
溫度補償,實行雙重恆溫槽控制法。利用比例控制的恆溫槽能把晶體的溫度穩定度提高到5000倍以上,使振盪器頻率穩定度至少保持在1×10-9。OCXO主要用於移動通信基地站、國防、導航、頻率計數器、
頻譜和網路分析儀等設備、儀表中。OCXO是由恆溫槽控制電路和振盪器電路構成的。通常人們是利用
熱敏電阻“
電橋”構成的差動串聯放大器,來實現溫度控制的。具有自動增益控制(AGC)的(C1app)振盪電路,是獲得振盪頻率高穩定度的比較理想的技術方案。OCXO的技術水平有了很大的提高。日本電波工業公司開發的新器件功耗僅為老產品的1/10。在克服OCXO功耗較大這一缺點方面取得了重大突破。該公司使用應力補償切割(SCCut)石英晶體振子製作的OCXO,與使用AT切形石英晶體振子的OCXO比較,具有高得多的頻率穩定度和非常低的相位噪聲。
相位噪聲是指信號功率與噪聲功率的比率(C/N),是表征頻率顫抖的技術指標。在對預期信號既定補償處,以1Hz頻寬為單位來測量相位
噪聲。Bliley公司用AT切形晶體製作的NV45A在補償點10Hz、100Hz、1kHz和10kHz處的相位噪聲分別為100、135、140和145dBc/Hz,而用SC切割晶體製成的同樣OCXO,則在所有補償點上的噪聲性能都優於5dBc/Hz。
金石集團生產的OCXO,頻率範圍為5~120MHz,在-10~+60℃的溫度範圍內,頻率穩定度有±0.02、±0.03和±0.05ppm,老化指標為±0.02ppm/年和±0.05ppm/年。Oak頻率控制公司的4895型4.096~45MHz雙
恆溫箱控制OCXO,溫度穩定度僅為0.002ppm(2×10-10)/0~75℃;4895型OCXO的尺寸是50.8mm×50.8mm×38.3mm,老化率為±0.03ppm/年。如果體積縮小一點,在性能指標上則會有所犧牲。Oak公司生產的10~25MHz表面貼裝OCXO,頻率穩定度為±0.05ppm/0~70℃。PiezoCrystal的275型用於全球定位系統(GPS)的OCXO採用SC切形石英晶體振子,在0~75℃範圍內總頻偏小於±0.005ppm,最大老化率為±0.005ppm/年。Vectron國際公司的CO-760型OCXO,尺寸為25.4mm見方,高12.7mm,在OCXO產品中,體積算是較小的。隨著移動通信產品的迅猛增長,對OCXO的市場需求量會逐年增加。OCXO的發展方向是順應高頻化、高頻率穩定度和低相位噪聲的要求,但在尺寸上的縮小餘地非常有限。 套用:
GPS時鐘、移頻直放站、基站、接入網、測試設備
特點:低相位噪聲、高穩定度
頻率範圍:1MHz-160 MHz
常用頻點:4.096 5 5.12 6.4 8.192 9.8304 10 10.23 10.24 12 12.8 13 15.36 15.6 16.38 16.384 19.44 20 30.72 32.768 36.864 38.88 40 40.545 51.2 58.078 65 73.6 77.76 80 100 107.374 120 131.04 160
選用指南
晶體振盪器被廣泛套用到軍、民用通信電台,
微波通信設備,程控電話交換機,
無線電綜合測試儀,
BP機、行動電話發射台,高檔頻率計數器、GPS、衛星通信、遙控移動設備等。它有多種封裝,特點是電氣性能規範多種多樣。它有好幾種不同的類型:電壓控制晶體振盪器(VCXO)、溫度補償晶體振盪器(TCXO)、恆溫晶體振盪器(OCXO),以及數字補償晶體振盪器(MCXO或DTCXO),每種類型都有自己的獨特性能。如果需要使設備即開即用,您就必須選用VCXO或溫補晶振,如果要求穩定度在0.5ppm以上,則需選擇數字溫補晶振(MCXO)。模擬溫補晶振適用於穩定度要求在5ppm~0.5ppm之間的需求。VCXO只適合於穩定度要求在5ppm以下的產品。在不需要即開即用的環境下,如果需要信號穩定度超過0.1ppm的,可選用OCXO。
頻率穩定性的考慮:晶體振盪器的主要特性之一是工作溫度內的穩定性,它是決定振盪器價格的重要因素。穩定性愈高或溫度範圍愈寬,器件的價格亦愈高。工業級標準規定的-40~+75℃這個範圍往往只是出於設計者們的習慣,倘若-30~+70℃已經夠用,那么就不必去追求更寬的溫度範圍。設計
工程師要慎密決定特定套用的實際需要,然後規定振盪器的穩定度。指標過高意味著花錢愈多。
晶體老化是造成頻率變化的又一重要因素。根據目標產品的預期壽命不同,有多種方法可以減弱這種影響。晶體老化會使輸出頻率按照對數曲線發生變化,也就是說在產品使用的第一年,這種現象才最為顯著。例如,使用10年以上的晶體,其老化速度大約是第一年的3倍。採用特殊的晶體加工工藝可以改善這種情況,也可以採用調節的辦法解決,比如,可以在控制引腳上施加電壓(即增加電壓控制功能)等。
與穩定度有關的其他因素還包括電源電壓、負載變化、相位噪聲和抖動,這些指標應該規定出來。對於工業產品,有時還需要提出振動、衝擊方面的指標,軍用品和宇航設備的要求往往更多,比如壓力變化時的容差、受
輻射時的容差,等等。
輸出:必須考慮的其它參數是輸出類型、相位噪聲、抖動、電壓特性、負載特性、功耗、封裝形式,對於工業產品,有時還要考慮衝擊和振動、以及電磁干擾(EMI)。晶體振盪器可HCMOS/TTL兼容、ACMOS兼容、ECL和正弦波輸出。每種輸出類型都有它的獨特波形特性和用途。應該關注三態或互補輸出的要求。對稱性、上升和下降時間以及
邏輯電平對某些套用來說也要作出規定。許多DSP和通信晶片組往往需要嚴格的對稱性(45%至55%)和快速的上升和下降時間(小於5ns)。
相位噪聲和抖動:在頻域測量獲得的相位噪聲是短期穩定度的真實量度。它可測量到中心頻率的1Hz之內和通常測量到1MHz。晶體振盪器的相位噪聲在遠離中心頻率的頻率下有所改善。TCXO和OCXO振盪器以及其它利用基波或諧波方式的晶體振盪器具有最好的相位噪聲性能。採用鎖相環合成器產生輸出頻率的振盪器比採用非鎖相環技術的振盪器一般呈現較差的相位噪聲性能。
抖動與相位噪聲相關,但是它在時域下測量。以微微秒表示的抖動可用有效值或峰—峰值測出。許多套用,例如通信網路、無線數據傳輸、ATM和SONET要求必須滿足嚴格的拌動指標。需要密切注意在這些系統中套用的振盪器的抖動和相位噪聲特性。
電源和負載的影響:振盪器的頻率穩定性亦受到振盪器電源電壓變動以及振盪器負載變動的影響。正確選擇振盪器可將這些影響減到最少。設計者應在建議的電源電壓容差和負載下檢驗振盪器的性能。不能期望只能額定驅動15pF的振盪器在驅動50pF時會有好的表現。在超過建議的電源電壓下工作的振盪器亦會呈現較差的波形和穩定性。 對於需要電池供電的器件,一定要考慮功耗。引入3.3V的產品必然要開發在3.3V下工作的振盪器。較低的電壓允許產品在低功率下運行。大部分市售的表面貼裝振盪器在3.3V下工作。許多採用傳統5V器件的穿孔式振盪器正在重新設計,以便3.3V下工作。
封裝:與其它電子元件相似,時鐘振盪器亦採用愈來愈小型的封裝。根據客戶的需要製作各種類型、不同尺寸的晶體振盪器(具體資料請參看產品手冊)。通常,較小型的器件比較大型的表面貼裝或穿孔封裝器件更昂貴。所以,小型封裝往往要在性能、輸出選擇和頻率選擇之間作出折衷。
工作環境:晶體振盪器實際套用的環境需要慎重考慮。例如,高強度的振動或衝擊會給振盪器帶來問題。除了可能產生
物理損壞,振動或衝擊可在某些頻率下引起錯誤的動作。這些外部感應的擾動會產生頻率跳動、增加噪聲份量以及間歇性振盪器失效。
對於要求特殊EMI兼容的套用,EMI是另一個要優先考慮的問題。除了採用合適的PC母板布局技術,重要的是選擇可提供輻射量最小的時鐘振盪器。一般來說,具有較慢上升/下降時間的振盪器呈現較好的EMI特性。
檢測:對於晶振的檢測,通常僅能用示波器(需要通過電路板給予加電)或頻率計實現。萬用表或其它測試儀等是無法測量的。如果沒有條件或沒有辦法判斷其好壞時,那只能採用代換法了,這也是行之有效的。
晶振常見的故障有:(a)內部漏電;(b)內部開路;(c)變質頻偏;(d)與其相連的外圍電容漏電。從這些故障看,使用萬用表的高阻檔和測試儀的VI曲線功能應能檢查出(C),(D)項的故障,但這將取決於它的損壞程度。
總結:器件選型時一般都要留出一些餘量,以保證產品的可靠性。選用較高檔的器件可以進一步降低失效機率,帶來潛在的效益,這一點在比較產品價格的時候也要考慮到。要使振盪器的“整體性能”趨於平衡、合理,這就需要權衡諸如穩定度、工作溫度範圍、晶體老化效應、相位噪聲、成本等多方面因素,這裡的成本不僅僅包含器件的價格,而且包含產品全壽命的使用成本。
設計要點
1.使晶振、外部電容器(如果有)與IC 之間的信號線儘可能保持最短。當非常低的電流通過IC 晶振振盪器時,如果線路太長,會使它對EMC、ESD 與串擾產生非常敏感的影響。而且長線路還會給振盪器增加寄生電容;
2.儘可能將其它時鐘線路與頻繁切換的信號線路布置在遠離晶振連線的位置;
3.當心晶振和地的走線
4.將晶振外殼接地。