王文(中國科學院聲學研究所研究員)

王文(中國科學院聲學研究所研究員)

本詞條是多義詞,共60個義項
更多義項 ▼ 收起列表 ▲

王文,男,1976年10月生。博士,德國洪堡學者,中國科學院“百人計畫”入選者,中科院聲學所研究員,博士生導師,中科院特聘研究員,IEEE高級會員,江蘇省高層次雙創人才入選者。

基本介紹

  • 中文名王文
  • 國籍:中國
  • 民族:漢
  • 出生地:湖南沅江
  • 出生日期:1976年10月
  • 職業:教師
  • 畢業院校:中科院
  • 學位/學歷:博士
  • 專業方向:微聲學
  • 職務:博士生導師
  • 主要成就:中科院“百人計畫”入選者;德國洪堡學者;中科院骨幹人才特聘研究員
  • 學術代表作:Advances in chemical sensors
  • 性別:男
人物生平,主要成就,出版著作,

人物生平

教育過程
1995—1999中南工業大學資源環境與建築工程學院,學士;
1999—2002 中南大學信息物理工程學院,碩士;
2002—2005 中國科學院聲學研究所,博士。
工作履歷
2005-2007 韓國亞洲大學計算機與電子工程系,博士後;
2007-2009 韓國亞洲大學計算機與電子工程系,研究教授;
2010-2011 德國弗賴堡大學微系統工程系,洪堡客座教授;
2011-至今 中國科學院聲學研究所,研究員。

主要成就

聲表面波(SAW)通過澱積於壓電晶體表面的叉指換能器所激發並沿壓電晶片表面傳播,以此技術形成的聲表面波器件已經廣泛套用於移動以及無線通訊系統之中。另外,由於聲波沿基片表面傳播,聲能量集中於晶體表面,因此對外圍物理或者化學參量的擾動極為靈敏,因而在感測器領域有著極有潛力的套用。這種基於聲表面波技術的感測器相對於其它類型的感測器而言具有其獨特優點,即低成本、高靈敏度、良好的穩定性與可靠性,而且藉助於無線讀取系統可以實現無線無源檢測。廣泛套用於自動控制(力矩與輪胎壓力控制系統等)、醫療套用(生物感測器),工業、商業以及軍事套用(氣體、濕度、溫度檢測等)。
我們的研究興趣在有源感測器方面主要集中在基於聲表面波技術的氣體感測器、生物感測器、加速度以及溫濕度感測器研究,在無線無源感測器方面則主要集中在溫度、電流及振動等方面的套用研究。通過關鍵技術的突破,以期促進其走向真正意義上的實際套用。

出版著作

1. “Design optimization of SAW pressure sensor with equivalent circuit model”, Sensor and material, 2006,Vol.18, No.6, pp: 301-312
2. “Viscoelastic Analysis of a Surface Acoustic Wave Gas Sensor Coated by a New Deposition Technique”, Chinese Journal of Chemical Physics, vol.19(2006), No.1,pp: 47-53,
3. “Surface acoustic wave based Pressure Sensor with Ground Shielding over Cavity on 41 YX LiNbO3”, Jpn. J. Appl. Phys., 2006,Vol. 45, No. 7, pp: 5974-5980
4. “Long range wireless characterization of 2.4GHz SAW-based pressure sensor using network analyzer”, Electron. Lett., 2006, Vol. 42, No. 15, pp: 889-891
5. “High Frequency Stability Oscillator for surface acoustic wave-based gas sensor”, Smart Mater. Struct., 2006, Vol.15, pp:1525-1530,
6. “Optimal design on SAW sensor for Wireless Pressure Measurement based on Reflective Delay Line”, Sensor. Actuat. A-Phys., Vol.139(2007), pp:2-6
7. “A novel 440MHz wireless SAW microsensor integrated with pressure-temperature sensors and ID tag”, J. Micromech. Microeng., 2007, Vol. 17, No. 3, pp: 515-523
8. “Enhanced Sensitivity of SAW Gas Sensor Coated Molecularly Imprinted Polymer Incorporating High Frequency Stability Oscillator”, Sensor. Actuat. B-Chem.,2007, Vol.125, pp: 422-427
9. “A novel wireless, passive CO2 sensor incorporating a surface acoustic wave reflective delay line”, Smart Mater. Struct., 2007, Vol. 16, pp: 1382-1389.
10. “Wireless love-wave chemical sensor on 41 YX LiNbO3”, Electron. Lett., 2007, Vol. 43 Issue 22, p1239-1241.
11. “Enhanced Sensitivity of Wireless Chemical Sensor Based on Love Wave Mode”, Jpn. J. Appl. Phys., Vol. 47, No.9, 2008, pp. 7372-7379
12. A Love Wave Reflective Delay Line with Polymer Guiding Layer for Wireless Sensor Application, Sensors 2008, Vol.8, No.12, pp: 7917-7929
13. “Theoretical analysis on response mechanism of polymer-coated chemical sensor based Love wave in viscoelastic media”, Sensor. Actuat. B-Chem., 2009, 138, pp.432-440
14.The development of a wireless love wave biosensor on 41 YX LiNbO3, Smart Mater. Struct., 18 (2009), pp.1-9,
15. “Enhanced sensitivity of novel surface acoustic wave microelectromechanical system-interdigital transducer gyroscope”, Jpn. J. Appl. Phys., Vol. 48, 2009 , pp: 06FK09-1~8(SCI)
16. “Wirelessly driven and battery-free Love wave biosensor based on dinitrophenyl immobilization”, Jpn. J. Appl. Phys., Vol. 48, 2009, pp: 06FJ05-1~7
17. Development of new wireless SAW sensor for simultaneous measurement of pressure-temperature and ID tag, Jpn. J. Appl. Phys., Vol.48, 2009, pp: 066505-1~5
18. Wireless surface acoustic wave chemical sensor for simultaneous measurement of CO2 and humidity, J. Micro/NanoliTh. MEMS MOEMS, Vol.8(3), 2009, pp: 031306-1~6
19. Enhanced Sensitivity of a Surface Acoustic Wave Based Gyroscope, Jpn. J. Appl. Phys.,48 (2009), pp: 104502-1~7
20.“A new micro rate sensor based on shear horizontal surface acoustic wave gyroscopic effect”, Jpn. J. Appl. Phys.,49,2010, pp: 096602-1~7
21. Development of SAW-based multi-gas sensor for simultaneous detection of CO2 and NO2 , Sensor. Actuat. B-Chem., 154, pp.9-16, 2011
22. Development of SAW based gyroscope with high shock and thermal stability, Sensor. Actuat. A-Phys., 165(1), 2011, pp: 8-15
23. “ Development of a Wireless, Battery-Free SAW Volatile Organic Compounds Sensor Integrated with Temperature Sensor“, Sens. Lett., Vol. 9, No. 1, 2011, pp: 82-86(5)
24. Advances in SXFA-Coated SAW Chemical Sensors for Organophosphorous Compound Detection. Sensors 2011, 11, 1526-1541.
25. “Enhanced sensitivity of a surface acoustic wave gyroscope using a progressive wave”, J. Micromech. Microeng. 21 (2011) 075015
26. “Wireless and passive gyroscope based on surface acoustic wave gyroscopic effect”, Appl. Phys. Express, 2011, Vol.4, 086601-1~3
27. “Development of a new surface acoustic wave gyroscope on X-112˚Y LiTaO3 substrate”, Sensors 2011, 11, 10894-10906
28. “Advances in SAW gas sensors based on condensation-adsorption effect”, Sensors 2011, 11, 11871-11884
29. “Development of a SnO2/CuO-coated surface acoustic wave-based H2S sensor with switch-like response and recovery”, Sensor. Actuat. B-Chem., 169 (2012) 10– 16
30. “A novel shock and heat tolerant gyrosensor utilizing a one-port surface acoustic wave reflective delay line”, J. Micromech. Microeng. Vol.22, No. 4, 045007
31. “Temperature Effects on the Propagation Characteristics of Love Waves along Multi-Guide Layers of SiO2/Su-8 on ST-90°X Quartz”, Sensors 2012, 12, 7337-7349
32.“Replyto“commentstothe‘WirelessandPassiveGyroscopebasedon SurfaceAcousticWaveGyroscopicEffect’”, Appl.Phys.Express 5(2012)109102
33.Theoretical approach on SAW characteristics of layered structures for gas sensing,J. Acoust. Soc. Am.131, 3466(2012)
34. ” Optimal design on polyaniline-coated surface acoustic wave based humidity sensor”, Sensors, 2013, 13, 16816-16828
35. “Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays”, Sensors, 14, 3908-3920,2014
36. “A SAW-Based Chemical Sensor for Detecting Sulfur-Containing Organophosphorus Compounds Using a Two-Step Self-Assembly and Molecular Imprinting Technology ”,Sensors 2014, 14, 8810-8820
37. “A stable and highly sensitive strain sensor based on a surface acoustic wave oscillator”, Sensors and Actuators A 218 (2014) 80–87
38. “A novel wireless and temperature-compensated SAW vibration sensor”, Sensors 2014, 14, 20702-20712
39.“Surface acoustic wave acceleration sensor with high sensitivity incorporating ST-X quartz cantilever beam”, Smart Mater. Struct.., 24 (2015) 015015
40.“Temperature-compensated Love wave based gas sensor on waveguide structure of SiO2/36 LiTaO3”, Smart Mater. Struct., 24 (2015) 065019
41.“Selective Surface Acoustic Wave-based Organophosphorus Sensor Employing a Host-Guest Self-Assembly monolayer of β-Cyclodextrin Derivative ”, Sensors 2015, 15, 17916-17925
42.Optimization of a BSP3-coated surface acoustic wave chemical sensor,IEEE Sensors Journal, 15,11,6730-6737,2015
43.A room temperature supramolecular cryptophane A-coated methane gas sensor, Sensors, Sensors 2016, 16, 73
44.“Optimization of surface acoustic wave based micro rate sensor”, Sensors, 2015, 15, 25761-25773
45." Development of a wireless and passive SAW based chemical sensor for organophosphorous compounds detection ", Sensors 2015, 15, 30187–30198

相關詞條

熱門詞條

聯絡我們