內容簡介
《物理學家用的幾何代數》是一部不僅讓對物理學感興趣的讀者的讀物,也是一本對物理現實感興趣的讀者的讀物。幾何代數在過去的十年中得到了快速發展,成為物理和工程領域的一個重要課題。作者是該領域的一個領頭人物,做了許多重大進展。書中帶領讀者走進該領域,其中包括好多套用,黑洞物理學和量子計算,非常適於作為一本幾何代數物理套用方面的研究生教程。
目錄
Preface
Notation
1Introduction
1.1Vector(linear)spaces
1.2Thescalarproduct
1.3Complexnumbers
1.4Quaternions
1.5Thecrossproduct
1.6Theouterproduct
1.7Notes
1.8Exercises
2Geometricalgebraintwoandthreedimensions
2.1Anewproductforvectors
2.2Anoutlineofgeometricalgebra
2.3Geometricalgebraoftheplane
2.4Thegeometricalgebraofspace
2.5Conventions
2.6Reflections
2.7Rotations
2.8Notes
2.9Exercises
3Classicalmechanics
3.1Elementaryprinciples
3.2Two—bodycentralforceinteractions
3.3Celestialmechanicsandperturbations
3.4Rotatingsystemsandrigid—bodymotion
3.5Notes
3.6Exercises
4Foundationsofgeometricalgebra
4.1Axiomaticdevelopment
4.2Rotationsandrefiections
4.3Bases,framesandcomponents
4.4Linearalgebra
4.5Tensorsandcomponents
4.6Notes
4.7Exercises
5Relativityandspacetime
5.1Analgebraforspacetime
5.2Observers,trajectoriesandframes
5.3Lorentztransformations
5.4TheLorentzgroup
5.5Spacetimedynamics
5.6Notes
5.7Exercises
6Geometriccalculus
6.1Thevectorderivative
6.2Curvilinearcoordinates
6.3Analyticfunctions
6.4Directedintegrationtheory
6.5Embeddedsurfacesandvectormanifolds
6.6Elasticity
6.7Notes
6.8Exercises
7Classicalelectrodynamics
7.1Maxwell'sequations
7.2Integralandconservationtheorems
7.3Theelectromagneticfieldofapointcharge
7.4Electromagneticwaves
7.5Scatteringanddiffraction
7.6Scattering
7.7Notes
7.8Exercises
8Quantumtheoryandspinors
8.1Non—relativisticquantumspin
8.2Relativisticquantumstates
8.3TheDiracequation
8.4Centralpotentials
8.5Scatteringtheory
8.6Notes
8.7Exercises
9Multiparticlestatesandquantumentanglement
9.1Many—bodyquantumtheory
9.2Multiparticlespacetimealgebra
9.3Systemsoftwoparticles
9.4Relativisticstatesandoperators
9.5Two—spinorcalculus
9.6Notes
9.7Exercises
10Geometry
10.1Projectivegeometry
10.2Conformalgeometry
10.3Conformaltransformations
10.4Geometricprimitivesinconformalspace
10.5Intersectionandreflectioninconformalspace
10.6Non—Euclideangeometry
10.7Spacetimeconformalgeometry
10.8Notes
10.9Exercises
11Furthertopicsincalculusandgrouptheory
11.1Multivectorcalculus
11.2Grassmanncalculus
11.3Liegroups
11.4Complexstructuresandunitarygroups
11.5Thegenerallineargroup
11.6Notes
11.7Exercises
12LagrangianandHamiltoniantechniques
12.1TheEuler—Lagrangeequations
12.2Classicalmodelsforspin—1/2particles
12.3Hamiltoniantechniques
12.4Lagrangianfieldtheory
12.5Notes
12.6Exercises
13Symmetryandgaugetheory
13.1Conservationlawsinfieldtheory
13.2Electromagnetism
13.3Diractheory
13.4Gaugeprinciplesforgravitation
13.5Thegravitationalfieldequations
13.6ThestructureoftheRiemanntensor
13.7Notes
13.8Exercises
14Gravitation
14.1Solvingthefieldequations
14.2Spherically—symmetricsystems
14.3Schwarzschildblackholes
14.4Quantummechanicsinablackholebackground
14.5Cosmology
14.6Cylindricalsystems
14.7Axially—symmetricsystems
14.8Notes
14.9Exercises
Bibliography
Index