燃料電池汽車

燃料電池汽車

燃料電池汽車也可以算作電動汽車,但你可以在五分鐘內給電池灌滿燃料,而不是等上幾個小時來充滿電。燃料電池汽車也是電動汽車,只不過“電池”是氫氧混合燃料電池。和普通化學電池相比,燃料電池可以補充燃料,通常是補充氫氣。一些燃料電池能使用甲烷和汽油作為燃料,但通常是限制在電廠和叉車等工業領域使用。

基本介紹

  • 中文名:燃料電池汽車
  • 外文名:Fuel cell vehicles (FCV)
  • 採用材料:甲醇、天然氣、汽油等
  • 別稱:綠色的新型環保汽車
  • 技術優點:近似零排放、減少了水污染等
  • 發展方向:超微型汽車、純電動汽車等
簡介,工作原理,特點,底盤布置,管理系統,電子控制,關鍵技術,電池技術,電機技術,控制器技術,國內外研究現狀,北美,歐洲,日韓,中國,

簡介

燃料電池汽車( FCV) 是一種用車載燃料電池裝置產生的電力作為動力的汽車。車載燃料電池裝置所使用的燃料為高純度氫氣或含氫燃料經重整所得到的高含氫重整氣。與通常的電動汽車比較, 其動力方面的不同在於FCV 用的電力來自車載燃料電池裝置, 電動汽車所用的電力來自由電網充電的蓄電池。因此, FCV 的關鍵是燃料電池。
燃料電池是一種不燃燒燃料而直接以電化學反應方式將燃料的化學能轉變為電能的高效發電裝置。發電的基本原理是: 電池的陽極( 燃料極) 輸入氫氣( 燃料) , 氫分子( H2) 在陽極催化劑作用下被離解成為氫離子( H+ ) 和電子( e-) , H+ 穿過燃料電池的電解質層向陰極( 氧化極) 方向運動, e-因通不過電解質層而由一個外部電路流向陰極; 在電池陰極輸入氧氣( O2) , 氧氣在陰極催化劑作用下離解成為氧原子( O) , 與通過外部電路流向陰極的e-和燃料穿過電解質的H+ 結合生成穩定結構的水( H2O) , 完成電化學反應放出熱量。這種電化學反應與氫氣在氧氣中發生的劇烈燃燒反應是完全不同的, 只要陽極不斷輸入氫氣, 陰極不斷輸入氧氣, 電化學反應就會連續不斷地進行下去, e-就會不斷通過外部電路流動形成電流, 從而連續不斷地向汽車提供電力。與傳統的導電體切割磁力線的迴轉機械發電原理也完全不同, 這種電化學反應屬於一種沒有物體運動就獲得電力的靜態發電方式。因而, 燃料電池具有效率高、噪音低、無污染物排出等優點, 這確保了FCV 成為真正意義上的高效、清潔汽車。
為滿足汽車的使用要求, 車用燃料電池還必須具有高比能量、低工作溫度、起動快、無泄漏等特性,在眾多類型的燃料電池中, 質子交換膜燃料電池( PEMFC) 完全具備這些特性, 所以FCV 所使用的燃料電池都是PEMFC。

工作原理

燃料電池汽車的工作原理是,作為燃料的在汽車搭載的燃料電池中,與大氣中的氧氣發生氧化還原化學反應,產生出電能來帶動電動機工作,由電動機帶動汽車中的機械傳動結構,進而帶動汽車的前橋(或後橋)等行走機械結構工作,從而驅動電動汽車前進。
7核心部件燃料電池。燃料電池的反應結果會產生極少的二氧化碳和氮氧化物,副產品主要產生水,因此被稱為綠色新型環保汽車。燃料電池汽車是電動汽車的一種,其核心部件燃料電池。通過氫氣和氧氣的化學作用,而不是經過燃燒,直接變成電能動力。
燃料電池汽車的氫燃料能通過幾種途徑得到。有些車輛直接攜帶著純氫燃料,另外一些車輛有可能裝有燃料重整器,能將烴類燃料轉化為富氫氣體。單個的燃料電池必須結合成燃料電池組,以便獲得必需的動力,滿足車輛使用的要求。圖2 為燃料電池汽車的燃料電池本體示意圖。
圖2圖2

特點

與傳統汽車相比,燃料電池汽車與傳統的內燃機驅動汽車在構造及動力傳輸等方面的不同, 為汽車的整體設計提出了新的要求。傳統內燃機汽車的發動機----變速器動力總成在燃料電池汽車中不復存在, 取而代之的是燃料電池反應堆、蓄電池、氫氣罐、電動機、DC /DC 轉化器等設備。而制動系統和懸架也相應變化。因此, 根據燃料電池汽車自身特點,在設計時, 應作相應的變化和改進。燃料電池汽車具有以下優點:
1、零排放或近似零排放。
2、減少了機油泄漏帶來的水污染。
3、降低了溫室氣體的排放。
4、提高了燃油經濟性。
5、提高了發動機燃燒效率。
6、運行平穩、無噪聲。
燃料電池汽車的特點表現在以下方面:

底盤布置

燃料電池動力總成包括: 氫氣罐總成、蓄電池總成、燃料電池堆總成、動力輸出系統總成等。其中, 儲氫罐一般放置於底盤的中部, 或後排座椅的下方空間(傳統內燃機轎車的油箱位置) , 將氫氣罐分散存儲。除了燃料電池動力總成外, 對汽車制動總成、前後懸架總成及輪胎等方面也應作相應的調整和測試。特別是隨著輪轂電機技術的發展, 使燃料電池汽車在電動機的放置有了新的選擇, 增大了汽車內部空間。而各電動輪的驅動力也可直接控制, 提高惡劣路面條件下汽車的行使性能。底盤布置應把絕大多數的負載均勻分配在底盤的前後端, 降低車輛的總體重心, 使轎車具有良好的操控性能, 並改善車輛的整體安全性。

管理系統

燃料電池汽車的動力系統一般由質子交換膜燃料電池、蓄電池、電機和系統控制設備組成。燃料電池所生成的電能經過DC /DC 轉換器、DC /AC逆變器等的變換, 帶動電機的運轉, 將電能轉變為機械能, 為汽車提供動力。在一些關鍵部件, 如質子交換膜燃料電池和蓄電池等, 其熱特性及傳熱性質與傳統汽車有著很大的不同, 為燃料電池汽車的水、熱管理提出了新的目標和要求。

電子控制

與傳統汽車相同, 電子控制在燃料電池汽車的發展中也將起著越來越重要的作用。汽車的各種操縱系統都會向著電子化和電動化的方向發展, 實現“線操控”, 即用導線代替機械傳動機構,如“導線制動”、“導線轉向”等; 現有的12V 動力電源已滿足不了汽車上所有電氣系統的需要, 42V汽車電氣系統新標準的實施, 將會使汽車電器零
部件的設計和結構發生重大的變革, 機械式繼電器、熔絲式保護電路也將隨之淘汰。同時, 燃料電池的特性有其自身的特點:
a.電壓低, 電流大;
b.輸出電流會隨溫度的升高而升高, 輸出電壓會隨輸出電流的增大而下降;
c.從開始輸出電壓、電流到逐漸進入穩定狀態, 停留在過渡帶範圍內的動態反應時間較長。正是由於以上特點, 大多數電器和電機難以適應其電壓特性, 所以必須和DC /DC 變換器和DC /AC 逆變器配合使用, 需要對燃料電池系統進行大量的功率調節以保證電壓的穩定。
( 1)當燃料電池的輸出功率大於汽車的需要時, 多餘的功率可對蓄電池進行充電, 在動力系統起動時蓄電池可以給輔助系統提供電源;
( 2)當燃料電池的功率不能滿足汽車加速、爬坡時, 蓄電池可提供附加功率, 配合燃料電池共同使用。
所以, 車輛可採用42V 的輔助電源獨立地為各種電子、電氣設備提供電能。由於燃料電池汽車較之傳統內燃機汽車在驅動方式上有著本質的區別, 所以在底盤布置、水熱管理、電子控制等諸多方面的設計也有著很大的不同。

關鍵技術

電動汽車的關鍵能源動力技術包括電池技術電機技術、控制器技術。電池技術、電機技術和控制器技術是電動汽車所特有的技術,這3項技術也是一直制約電動汽車大規模進入市場的關鍵因素。

電池技術

電池是電動汽車的動力源泉,也是一直制約電動汽車發展的關鍵因素。電動汽車用電池的主要性能指標是比能量(E) 、能量密度(Ed)、比功率(P)、循環壽命(L)和成本(C)等。要使電動汽車能與燃油汽車相競爭,關鍵就是要開發出比能量高、比功率大、使用壽命長的高效電池。
電動汽車用電池經過了3代的發展,已經取得了突破性進展。
第1代是鉛酸電池,目前主要是閥控鉛酸電池(VRLA) ,由於其比能量較高、價格低和能高倍率放電, 因此是目前惟一能大批量生產的電動汽車用電池。
第2代是鹼性電池,主要有鎳鎘、鎳氫、鈉硫、鋰離子和鋰聚合物等多種電池,其比能量和比功率都比鉛酸電池高,因此大大提高了電動汽車的動力性能和續駛里程,但其價格卻比鉛酸電池高。
第3代是以燃料電池為主的電池,燃料電池直接將燃料的化學能轉變為電能,能量轉變效率高,比能量和比功率都高,並且可以控制反應過程,能量轉化過程可以連續進行,因此是理想的汽車用電池還處於研製階段,一些關鍵技術還有待突破。
廣泛套用於電動汽車的燃料電池是一種稱為質子交換膜的燃料電池(PEMFC) ,它以純氫為燃料,以空氣為氧化劑,不經歷熱機過程,不受熱力循環限制,因此能量的轉換效率高,是普通內燃機熱效率的2~3倍。同時,它還具有噪音低、無污染、壽命長、啟動迅速、比功率大和輸出功率可隨時調整等特性,使得PEMFC非常適合用作交通工具的動力源。

電機技術

電動汽車驅動電機是所有電動汽車必不可少的關鍵部件。使用較多的有直流有刷永磁無刷交流感應開關磁阻4種電機。
直流有刷電機結構簡單,技術成熟,具有交流電機所不可比擬的優良電磁轉矩控制特性,所以直到20世紀80年代中期,仍是國內外電動汽車用電機的主要研發對象。但是,由於直流電機價格高,體積和質量大,因此在電動汽車上的套用受到了限制。
永磁無刷電機可以分為由方波驅動的無刷直流電機系統(BLD— CM)和由正弦波驅動的無刷直流電機系統(PMSM) ,它們都具有較高的功率密度,其控制方式與感應電機基本相同,其主要優點是效率可以比交流感應電機高6個百分點,因此在電動汽車上得到了廣泛的套用,是當前電動汽車用電動機的研發熱點。這類電機具有較高的能量密度和效率,其體積小、慣性低、回響快,非常適應於電動汽車的驅動系統,有極好的套用前景。但價格較貴,永磁材料一般僅耐熱12c=0I以下。目前,由日本研製的電動汽車主要採用這種電機。
交流感應電機也是較早用於電動汽車驅動的一種電機,它的調速控制技術比較成熟,具有結構簡單、體積小、質量小、成本低、運行可靠、轉矩脈動小、噪聲低、轉速極限高和不用位置感測器等優點,但因轉速控制範圍小、轉矩特性不理想,因此不適合頻繁啟動、頻繁加減速的電動汽車。美國以及歐洲研製的電動汽車多採用這種電機。
開關磁阻電機(SRM)具有簡單可靠、可在較寬轉速和轉矩範圍內高效運行,控制靈活、4象限運行、回響速度快和成本較低等優點。但實際套用發現,SRM存在著轉矩波動大、噪聲大、需要位置檢測器等缺點,所以套用受到了限制。
4種電機各有優缺點,但是對於電動汽車而言,由於電能是由各類電池提供的,價格昂貴而彌足珍貴,所以使用相對效率最高的永磁無刷電機是較為合理的,它已被廣泛套用於功率小於100kW 的現代電動汽車上。
在國外已有越來越多的電動汽車採用性能先進的電動輪(又稱輪轂電機),它用電機(多為永磁無刷式)直接驅動車輪,因此無傳統汽車的變速器、傳動軸、驅動橋等複雜的機械傳動部件,汽車結構大大簡化。但是它要求電機在低轉速下有很大的扭矩, 特別是對於軍用越野車,要求電機基點轉速:最高轉速=1:10。近幾年,美、英、法、德等國紛紛將電動輪技術套用于軍用越野車和輕型坦克上,並取得了重大成果。

控制器技術

控制器技術的變速和方向變換是靠電動機調速控制裝置來完成的,其原理是通過控制電動機的電壓和電流來實現電動機的驅動轉矩和旋轉方向的控制。目前電動汽車上套用較廣泛的是晶閘管斬波調速,通過均勻改變電機的端電壓,控制電機的電流,來實現電機的無級調速。在電子電力技術的不斷發展中,它也逐漸被其他電力電晶體(如GTO、MOSFET、BTR及IGBT 等)斬波調速裝置所取代。從技術的發展來看,伴隨著新型驅動電機的套用,電動汽車的調速控制轉變為直流逆變技術的套用將成為必然的趨勢。
在驅動電機的旋向變換控制中,直流電機依靠接觸器改變電樞或磁場的電流方向,實現電機的旋向變換,這使得控制電路複雜、可靠性降低。當採用交流異步電機驅動時,電機轉向的改變只需變換磁場三相電流的相序即可,可使控制電路簡化。此外,採用交流電機及其變頻調速控制技術,使電動汽車的制動能量回收控制更加方便,控制電路更加簡單。
二十一世紀以來,由感應電動機驅動的電動汽車幾乎都採用矢量控制和直接轉矩控制。矢量控制又有最大效率控制和無速度感測器矢量控制,前者是使勵磁電流隨著電動機參數和負載條件的變化,從而使電動機的損耗最小、效率最大;後者是利用電機電壓、電流和電機參數來估算出速度,不用速度感測器,從而達到簡化系統、降低成本、提高可靠性的目的。直接轉矩控制克服了矢量控制中解耦的問題,把轉子磁通定向變換為定子磁通定向,通過控制定子磁鏈的幅值以及該矢量相對於轉子磁鏈的夾角,從而達到控制轉矩的目的。由於直接轉矩的控制手段直接、結構簡單、控制性能優良和動態回響迅速,因此非常適合電動汽車的控制。
隨著電機及驅動系統的發展, 控制系統趨於智慧型化和數位化。變結構控制、模糊控制、神經網路、自適應控制、專家系統、遺傳算法等非線性智慧型控制技術,都將各自或結合套用於電動汽車的電機控制系統。它們的套用將使系統結構簡單,回響迅速,抗干擾能力強,參數變化具有魯棒性,可大大提高整個系統的綜合性能。

國內外研究現狀

隨著環境問題和能源問題的日益突出,新能源汽車成為了世界各大汽車廠商及研發機構的研究熱點,而在其中,燃料電池汽車(fuel-cell vehicle,FCV) 以其高效率和近零排放被普遍認為具有廣闊的發展前景。美國、歐盟、日本和韓國都投入了大量資金和人力進行燃料電池車輛的研究,通用、福特、克萊斯勒、豐田、本田、賓士等大公司都已經開發出燃料電池車型並已經在公路上運行,普遍狀況良好。近年來,我國在燃料電池方面的投入也不斷加大,北京奧運會、上海世博會期間都有燃料電池轎車和大客車進行了示範運行。燃料電池汽車將在新能源汽車中占據重要地位已經是不爭的事實。

北美

美國和加拿大是燃料電池研發和示範的主要區域,在美國能源部(DOE)、交通部(DOT)和環保局(EPA)等政府部門的支持下,燃料電池技術取得了很大的進步,通用汽車、福特汽車、豐田、戴姆勒賓士、日產、現代等整車企業均在美國加州參加燃料電池汽車的技術示範運行,並培育了美國的UTC(聯合技術公司)、加拿大的巴拉德(Ballad)等國際知名的燃料電池研發和製造企業美國通用汽車公司2007 年秋季啟動的Project Driveway 計畫,將100 輛雪佛蘭Equinox 燃料電池汽車投放到消費者手中,2009 年總行駛里程達到了160萬km。同年,通用汽車宣布開發全新的一代氫燃料電池系統,新系統與雪佛蘭Equinox 燃料電池車上的燃料電池系統相比,新一代氫燃料電池體積縮小了一半,質量減輕了100 kg,鉑金用量僅為原來的1/3。通用汽車新一代燃料電池汽車的鉑金用量已經下降到30 g,按照目前國際市場價格,鉑金為300~400 元/g,100 kW燃料電池的鉑金成本約為1 萬元人民幣,燃料電池的成本大幅度下降。預計到2017 年,100 kW燃料電池發動機的鉑金用量將下降到10~15 g,達到傳統汽油機三效催化器的鉑金用量水平。
美國在2006 年專門啟動了國家燃料電池公共汽車計畫(National Fuel Cell City Bus Program,NFCBP),進行了廣泛的車輛研發和示範工作,2011 年美國燃料電池混合動力公共汽車實際道路示範運行腳踏車壽命超過1.1 萬h 。美國在燃料電池混合動力叉車方面也進行了大規模示範,截至2011 年,全美大約有3000 台燃料電池叉車,壽命達到了1.25 萬h 的水平。燃料電池叉車在室內空間使用,具有噪音低、零排放的優點。

歐洲

歐洲的燃料電池客車示範計畫,完成了第6 框架計畫(Framework Program,2002—2006)和第7 框架計畫(2007—2012),目的是突破燃料電池和氫能發展的一些關鍵性技術難點,在CUTE (Clean Urban Transport for Europe, 歐洲清潔都市交通)及歐盟其他相關項目支持下,各個城市開展燃料電池公共汽車示範運行,今年新的計畫 CHIC( Clean Hydrogen in European Cities, 歐洲清潔都市交通)開始實施,包括阿姆斯特丹、巴塞隆納、漢堡、倫敦、盧森堡、 馬德里、波爾圖、斯德哥爾摩、斯圖加特、冰島以及澳大利亞珀斯, 即澳大利亞STEP 項目(Sustainable Transport Energy Program,可持續交通能源計畫)等,歐洲在燃料電池汽車的可靠性和成本控制等方面取得了長足的進步。
在德國,2012 年6 月,主要的汽車和能源公司與政府一起承諾,建立廣泛的全國氫燃料加注網路,支持發展激勵計畫,即到2015 年,全國建成50 個加氫站,為全國5000 輛燃料電池汽車提供加氫服務[7] 。戴姆勒賓士於2011 年開展燃料電池汽車的全球巡迴展示,驗證了燃料電池轎車性能已經達到了傳統轎車的性能,具備了產業化推廣的能力。戴姆勒集團參與“ Hy FLEET:CUTE(2003-2009)”項目。36 輛梅賽德斯-賓士Citaro 燃料電池客車已由20 個交通運營商進行運營使用,運營時間超過14 萬h、行駛里程超過220 萬km。但是第一代純燃料電池的客車,壽命只有2 000 h,經濟性較差。戴姆勒集團與2009 年開始推出第二代輪邊電機驅動的燃料電池客車,主要性能達到了國際先進水平,其經濟性大幅度改善,燃料電池耐久性達到1. 2 萬h。
德國西門子公司研發的燃料電池,已經成功地套用於德國的214 型潛艇上(氫氧型) [11] 。2007 年德國戴姆勒賓士公司,美國福特汽車公司和加拿大Ballard公司合作, 成立AFCC 公司(Automotive Fuel Cell Cooperation,車用燃料電池公司),以研發和推廣車用燃料電池。2013 年年初,寶馬公司決定與燃料電池技術排名第一的企業——豐田汽車公司合作,由豐田公司向寶馬公司提供燃料電池技術。

日韓

從全球範圍看,日本和韓國的燃料電池研發水平處於全球領先,尤其是豐田、日產和現代汽車公司,在燃料電池汽車的耐久性,壽命和成本方面逐步超越了美國和歐洲。豐田公司的2008 版FCHV-Adv 在實際測試中,實現了在-37 ℃順利啟動,一次加氫行駛里程達到了830km,單位里程耗氫量0.7 kg/(100 km),相當於汽油3L/(100 km),如圖3 所示 [12] 。2013 年11 月,豐田在“第43 屆東京車展2013”上,展出了計畫在2015 年投放市場的燃料電池概念車,作為技術核心的燃料電池組目前實現了當時公開的全球最高的3 kW/L 功率密度。該燃料電池組去掉了加濕模組,不但降低了成本、車質量和體積,還減少了燃料電池的熱容量,有利於燃料電池在低溫條件下迅速冷啟動。如圖5所示為豐田公司的FCHV-Adv。
目前豐田汽車公司在擴大混合動力汽車的同時,重點針對燃料電池汽車的產業化進行準備,擬在2015年投放新一代燃料電池轎車,進行批量生產;2016 年生產(與日野合作)新一代燃料電池客車。和豐田汽車公司類似,日產汽車也投入巨資開展燃料電池電堆和轎車的研發,2011 年日產的燃料電池電堆,功率90 kW,質量僅43 kg,2012 年,日產汽車公司研發的電堆功率密度達到了2.5 kW/L,這在當時是國際最高水平[14] 。另外,本田公司新開發的FCX Clarity燃料電池汽車,能夠在- 30℃順利啟動,續駛里程達到620 km[15] ,2014 年,本田宣布的新一代燃料電池堆功率密度也達到3 kW/L。韓國現代從2002 開始研發燃料電池汽車,2005 年採用巴拉德的電堆組裝了32 輛運動型多功能車(sports utility vehicle,SUV),2006 年推出了自主研發的第一代電堆,組裝了30 台SUV,4 輛大客車,並進行了示範運行;2009—2012 年間,開發了第2 代電堆,裝配100 台SUV,開始在國內進行示範和測試,並對電堆性能進行改進;2012 年,推出了第3 代燃料電池SUV 和客車,開始全球示範;2013 年,韓國現代宣布將提前2年開展千輛級別的燃料電池SUV(現代ix35)生產,在全球率先進入燃料電池千輛級別的小規模生產階段。該SUV 採用了100 kW燃料電池,24 kW鋰離子電池,100 kW電機,70 MPa 的氫瓶可以儲存5.6 kg 氫氣, 新歐洲行駛循環(New European Drive Cycle,NEDC) 循環工況續駛里程588 km,最高車速160 km/h。

中國

在中國國家“八六三”高技術項目、“十五規劃”的電動汽車重大科技專項與“十一五規劃”節能與新能源汽車重大項目的支持下,通過產學研聯合研發團隊的刻苦攻關,中國的燃料電池汽車技術研發取得重大進展,初步掌握了整車、動力系統與核心部件的核心技術,基本建立了具有自主智慧財產權的燃料電池轎車與燃料電池城市客車動力系統技術平台,也初步形成了燃料電池發動機、動力電池、DC/DC 變換器、驅動電機、供氫系統等關鍵零部件的配套研發體系,實現了百輛級動力系統與整車的生產能力。中國燃料電池汽車正處於商業化示範運行考核與套用的階段,已在北京奧運燃料電池汽車規模示範、上海世博燃料電池汽車規模示範、UNDP(United Nations Development Programme, 聯合國開發計畫)燃料電池城市客車示範以及“十城千輛”、廣州亞運會、
深圳大運會等示範套用中取得了良好的社會效益中國燃料電池轎車採用獨具特色的“電—電混合”動力系統平台技術方案,具有“動力系統平台整車適配、電—電混合能源動力控制、車載高壓儲氫系統、工業副產氫氣純化利用”的技術特徵。在“十五規劃”研發的基礎上,“十一五規劃”新一代燃料電池轎車動力系統結合整車平台的改變,採用扁平化的動力系統布置方式,燃料電池發動機氫氣子系統、空氣子系統與冷卻系統採用模組化分散布置的模式,增加了動力系統與整車適配的柔性,明顯提升整車的人機工程性能。同時,最佳化集成DC/DC 變換器、DC/AC控制器以及電動空調和低壓變換器等功率元器件的動力系統控制單元,在提升模組化的同時方便集中處理電磁兼容、系統冷卻以及電安全等問題,體現了電動
汽車動力系統集成設計的方向。與“十五規劃”燃料電池轎車動力系統相比,新一代動力系統的性能得到進一步最佳化與提高。主要表現在:燃料電池發動機功率從40 kW 提高到55 kW;動力蓄電池容量從48 kWh 減小到26 kWh ;電機功率從60 kW 提高到90 kW;電機控制器(DC/AC) 功率提高35%,體積比功率增加12.5%。同時,動力系統繼續保持燃料經濟性的技術優勢,在車輛整備質量增加近250 公斤的前提下整車動力性明顯提高,燃料經濟性則
仍然保持在1.2 kg/(100 km) 的原有水平。中國國家“八六三”高技術項目持續支持燃料電池汽車的技術研發工作,“十二五規劃”期間為保持中國電動汽車技術制高點,繼續保持了對燃料電池汽車的支持力度。從產業界來看,即使在“十五、十一五規劃”燃料電池汽車全球產業化熱潮期間,中國汽車工業界並沒有在燃料電池汽車方面有明顯投入,進入“十二五規劃”後,在燃料電池汽車產業化趨於理性化的大背景下,上汽集團制定了燃料電池汽車發展的五年規劃,以新源動力為燃料電池電堆供應商,開始投入大量資金研發燃料電池汽車,目前正進行第3 代燃料電池轎車FCV 的開發,在2011 年必比登比賽中,上汽開發的FCV 在燃料電池轎車組別中,名列第3。
同濟大學已開展多輪燃料電池轎車的研發工作,研製的燃料電池轎車已在奧運會、世博會進行大規模示範運行。在“十二五規劃”期間,同濟大學將為中國第一汽車集團公司、東風汽車公司、奇瑞汽車股份有限公司和中國長安汽車集團股份有限公司集成燃料電池轎車。在中國城市循環條件下,代表性燃料電池混合動力轎車的技術參數如表6 所示。
圖片6圖片6

相關詞條

熱門詞條

聯絡我們