無理數e

無理數e

e在數學中是代表一個數的符號,其實還不限於數學領域。在大自然中,建構,呈現的形狀,利率或者雙曲線面積及微積分教科書、伯努利家族等。現e已經被算到小數點後面兩千位了。

基本介紹

  • 中文名:無理數e
  • 類型:數的符號
  • 不限於:數學領域
  • 小數點:後面兩千位
e的定義,e的範圍,e的故事,引入,對數,利息,e的套用,數學名人,對數表的發明者,對數受到的讚譽,微積分教科書,伯努利家族,e的大小,e小數點後面幾位,e的極限表示,

e的定義

e是自然對數底數,是一個無限不循環小數,其值是2.71828...,它是這樣定義的:
當n→∞時,(1+1/n)^n的極限
註:x^y表示x的y次方。

e的範圍

隨著n的增大,底數越來越接近1,而指數趨向無窮大,那結果到底是趨向於1還是無窮大呢?其實,是趨向於2.71828……,不信你用計算器計算一下,分別取n=1,10,100,1000。但是由於一般計算器只能顯示10位左右的數字,所以再多就看不出來了。

e的故事

引入

這裡的e是一個數的代表符號,而我們要說的,便是e的故事。這倒叫人有點好奇了,要能說成一本書,這個數應該大有來頭才是,至少應該很有名吧?但是打開我們的記憶搜尋器,大部分人能想到的重要數字,除了0和1外,大概就只有和圓有關的π了,了不起的話,再加上虛數單位的i=√-1。那么這個e究竟是何方神聖呢?

對數

在高中數學裡,大家都學到過對數(logarithm)的觀念,也用過對數表。教科書里的對數表,是以10為底的,叫做常用對數(common logarithm)。課本里還簡略提到,有一種以無理數e=2.71828……為底數的對數,稱為自然對數(natural logarithm),這個e,正是我們故事的主角。不知這樣子說,是否引起你更大的疑惑呢?在十進位制系統里,用這樣奇怪的數為底,難道會比以10為底更「自然」嗎?更令人好奇的是,長得這么奇怪的數,會有什麼故事可說呢?

利息

這就要從以前說起了。至少在微積分發明之前半個世紀,就有人提到這個數,所以雖然它在微積分里常常出現,卻不是隨著微積分誕生的。那么是在怎樣的狀況下導致它出現的呢?一個很可能的解釋是,這個數和計算利息有關。
我們都知道複利計息是怎么回事,就是利息也可以並進本金再生利息。但是本利和的多寡,要看計息周期而定,以年周期來算的話,可以一年只計息一次,也可以每半年計息一次,或者一季一次,一月一次,甚至一天一次;當然計息周期愈短,本利和就會愈高。有人因此而好奇,如果計息周期無限制地縮短,比如說每分鐘計息一次,甚至每秒,或者每一瞬間(理論上來說),會發生什麼狀況?本利和會無限制地加大嗎?答案是不會,它的值會穩定下來,趨近於一極限值,而e這個數就現身在該極限值當中,所以e可以定義成一個極限值,但是在那時候,根本還沒有極限的觀念,因此e的值應該是觀察出來的,而不是用嚴謹的證明得到的。

e的套用

這個與計算複利關係密切的數,和數學領域不同分支中的許多問題都有關聯。在討論e的源起時,除了複利計算以外,事實上還有許多其他的可能。問題雖然都不一樣,答案卻都殊途同歸地指向e這個數。比如其中一個有名的問題,就是求雙曲線y=1/x底下的面積。雙曲線和計算複利會有什麼關係,不管橫看、豎看、坐著想、躺著想,都想不出一個所以然對不對?可是這個面積算出來,卻和e有很密切的關聯。我才舉了一個例子而已,這本書里提到得更多。e的影響力其實還不限於數學領域。大自然中太陽花的種子排列、鸚鵡螺殼上的花紋都呈現螺線的形狀,而螺線的方程式,是要用e來定義的。建構音階也要用到e,而如果把一條鏈子兩端固定,松松垂下,它呈現的形狀若用數學式子表示的話,也需要用到e。

數學名人

對數表的發明者

世界上第一個對數表是納皮爾(John Napier)發明的。納皮爾在十六世紀末、十七世紀初利用紙筆一項一項慢慢地算,而又還不能利用對數來化乘除為加減,好簡化計算。因此納皮爾整整花了二十年的時間建立他的對數表。

對數受到的讚譽

對數發明後,受到了熱切的歡迎,許多歐洲甚至中國的科學家都迅速採用,連納皮爾也得到了來自世界各地的讚譽。最早使用對數的人當中,包括了大名鼎鼎的天文學家克卜勒 ,他利用對數,簡化了行星軌道的繁複計算。

微積分教科書

在《毛起來說e》中,還有許多我們在一般數學課本里讀不到的有趣事實。比如第一本微積分教科書是誰寫的呢?(假如你曾受微積分課程之苦,也會想知道誰是「始作俑者」吧?」)是羅必達先生。對啦,就是羅必達法則(L'Hopital's Rule)的那位羅必達。但是羅必達法則反倒是約翰.伯努利先發現的。不過這無關乎剽竊的問題,他們之間是有協定的。

伯努利家族

說到伯努利可就有故事說了,這個家族實在不得了,別的家族出一位天才就可以偷笑了,而他們家族的天才是用「量產」形容。伯努利們前前後後在數學領域中活躍了一百年,他們的諸多成就(不僅止於數學領域),就算隨便列一列,也有一本書這么厚。不過這個家族另外擅長的一件事就不太敢恭維了,那就是吵架。自家人吵不夠,也跟外面的人吵(可以說是「表里如一」)。連爸爸與兒子合得一個大獎,爸爸還非常不滿意,覺得應該由自己獨得,居然氣得把兒子趕出家門;和現代的許多「孝子」們比起來,這位爸爸真該感到慚愧。

e的大小

e小數點後面幾位

e=2.718281828459045235360287471352662497757247093699959574966967627724076630353 5475945713821785251664274274663919320

e的極限表示

無理數e
e=lim<x-->0>(1+1/x)^x
=lim<n-->+∞>{1,2,3,4,…,n}
=lim<x-->+∞>∑(0,x)1/i!
註:{1,2,3,4,…,n}=1+1/{1+1/[2+(1/3+{1/4+…+(1/n)]})]…}

相關詞條

熱門詞條

聯絡我們