溫煥堯,男,博士,華南理工大學數學學院教授、博士生導師
基本介紹
- 中文名:溫煥堯
- 畢業院校:華南師範大學
- 學位/學歷:博士
- 職業:教師
- 專業方向:流體力學中的偏微分方程
- 任職院校:華南理工大學
人物經歷,教育經歷,工作經歷,學術兼職,研究方向,教育教學,學術成果,主持項目,發表論文,獲獎榮譽,
人物經歷
教育經歷
2001年- 2011年,華南師範大學,本碩博。碩博導師:丁時進教授。
工作經歷
2012/09 – 2014/11,挪威Stavanger大學,石油工程系,博士後,合作導師:S. Evje教授
2011/07 – 2013/07,華中師範大學,數學與統計學學院,博士後,合作導師:朱長江教授
2015/02 - 至今,華南理工大學,數學學院,教授
2018/1/28-2018/2/20, 美國普渡大學、匹茲堡大學,訪問學者
2017/05/15-27,香港中文大學數學研究所,訪問學者
2017/04/05-13,香港理工大學數學系,訪問學者
2016/09-2016/09,美國德州大學奧斯汀分校數學系,訪問學者
2016/08-2016/08,挪威Stavanger大學,石油工程系,訪問學者
2015/08-2015/09, 挪威Stavanger大學,石油工程系,訪問學
2014/10/13-2014/10/15,德國達姆施塔特工業大學,數學系, visiting scholar
2014/06/26-2014/06/28,挪威奧斯陸大學,數學系, visiting scholar
2011/01-2011/04,美國肯塔基大學,數學系, visiting student
2010/09-2010/12,華中師範大學,數學與統計學學院, visiting student
2009/10-2009/11,北京大學,國際數學中心, visiting student
政協第十三屆廣東省委員會委員
學術兼職
2011.09--, 美國《數學評論》評論員
研究方向
流體力學中的偏微分方程
教育教學
學術成果
主持項目
國家優秀青年科學基金項目 , 2018.01-2020.12
國家自然科學基金-面上項目 , 2017.01-2020.12
國家自然科學基金-青年科學基金項目 , 2014.01-2016.12
2013年獲中國博士後科學基金--特別資助項目
2012年獲中國博士後科學基金--面上資助項目
發表論文
34. A Stokes two-fluid model for cell migration that can account for physical cues
in the microenvironment. SIAM Journal on Mathematical Analysis, 50(2018),
86-118. (with S. Evje)
33. Global well-posedness and decay estimates of strong solutions to a two-phase
model with magnetic field, J. Differential Equations, 264(2018),
2377-2406.(with L. Zhu)
32. Global well-posedness of classical solutions to a fluid–particle interaction
model in R3. J. Differential Equations 263 (2017), no. 12, 8666–8717. (withS.J. Ding, B.Y. Huang)
31. Vanishing capillarity limit of the non-conservative compressible two-fluid model.
Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 4, 1361–1392. (with J. Lai, L. Yao)
30.On global solutions to the viscous liquid-gas model with unconstrained transition to
single-phase flow, Math. Models Methods Appl. Sci., Vol. 27, No. 2 (2017) 323–346.
(with S. Evje and C.J. Zhu)
29.Global solutions to the three-dimensional full compressible Navier-Stokes equations
with vacuum at infinity in some classes of large data, SIAM J. Math. Anal., Vol. 49, No. 1, pp. 162-221, 2017. (with C.J. Zhu)
28.Local classical solutions of compressible Navier-Stokes-Smoluchowski equations
with vacuum,Discrete and Continuous Dynamical Systems SERIES S,9(2016), 1717-1752.
(with S.J. Ding and B.Y. Huang)
27.Stability of a compressible two-fluid hyperbolic-elliptic system arising in fluid
mechanics, Nonlinear Analysis - Real World Applications, 31 (2016), 610–629.
(with S. Evje)
26.Global well-posedness and decay rates of strong solutions to a non-conservative compressible
two-fluid model, Arch. Rational Mech. Anal., 221 (2016), no. 3, 1285–1316.
(with S. Evje and W.J. Wang)
25.Global solutions to a one-dimensional non-conservative two-phase model,
Disc. Cont. Dyn. System - A,36 (2016), no. 4,1927–1955.
(with S. Evje and L. Yao).
24.On the Large Time Behavior of the Compressible Gas-Liquid Drift-Flux Model with Slip,
Math. Models Methods Appl. Sci. 25 (2015), no. 11, 2175–2215. (with S. Evje).
23.Analysis of a compressible two-fluid Stokes system with constant viscosity,
J. Math. Fluid Mech., 2015,17 (2015), no. 3, 423–436. (with S. Evje).
22.Global solutions of a viscous gas-liquid model with unequal fluid velocities in
a closed conduit, SIAM J. Math. Anal., 47 (2015), 381–406 (with S. Evje).
21.Weak solutions of a two-phase Navier–Stokes model with a general slip law.
Journal of Functional Analysis, 268(2015), 93–139 (with S. Evje).
20.Global symmetric classical solutions of the full compressible Navier-Stokes
equations with vacuum and large initial data. J. Math. Pures Appl., 102 (2014)
498–545 (with C.J. Zhu).
19.Global well-posedness and zero diffusion limit of classical solutions to 3D
conservation laws arising in chemotaxis. Z. Angew. Math. Phys. 65 (2014),
no. 6, 1167–1188 (with H.Y. Peng and C.J. Zhu).
18.Blow-up criterions of strong solutions to 3D compressible Navier–Stokes equations with
vacuum. Advances in Mathematics, 248 (2013), 534–572 (with C.J. Zhu).
17.Incompressible Limit of the Compressible Hydrodynamic Flow of Liquid Crystals.
Journal of Functional Analysis. 264 (2013), 1711–1756
(with S.J. Ding,J.R. Huang and R.Z. Zi).
16.Global classical large solutions to Navier-Stokes equations for viscous
compressible and heat conducting fluids with vacuum. SIAM J. Math. Anal.
45 (2013), 431–468 (with C.J. Zhu).
15.Weak solutions of a gas-liquid drift-flux model with general slip law for
wellbore operations. Disc. Cont. Dyn. System - A, 33(2013) , 4497–4530
(with S. Evje).
14.Global classical solutions of viscous liquid–gas two-phase flow model.
Math. Meth. Appl. Sci., 36(2013), 567–583 (with H.B. Cui and H.Y. Yin).
13.Blow up criterion for compressible nematic liquid crystal flows in
dimension three. Arch. Rational Mech. Anal. 204 (2012), 285–311
(with T. Huang and C.Y. Wang).
12.A blow-up criterion of strong solution to a 3D viscous liquid-gas
two-phase flow model with vacuum viscosity. J. Math. Pures Appl.
97 (2012) 204–229 (with L. Yao and C.J. Zhu).
11.Global spherically symmetric classical solution to compressible Navier-Stokes
equations with large initial data and vacuum. SIAM J. Math. Anal. 44 (2012),
1257-1278 (with S.J. Ding, L. Yao and C.J. Zhu).
10.Strong solutions of the compressible nematic liquid crystal flow. J. Differential
Equations, 252 (2012), 2222–2265 (with T. Huang and C.Y. Wang).
9.Compressible hydrodynamic flow of liquid crystals in 1-D. Disc. Cont. Dyn.
System - A, 32(2012), 539-563 (with S.J. Ding, J.Y. Lin and C.Y. Wang).
8.A blow-up criterion of strong solutions to a viscous liquid-gas two-phase flow
model with vacuum in 3D. Nonlinear Analysis, TMA, 75 (2012), 5229-5237 (with X.F. Hou).
7.Global classical large solutions to 1D compressible Navier-Stokes equations
with density-dependent viscosity and vacuum. J. Differential Equations, 251(2011),
1696-1725 (with S.J. Ding and C.J. Zhu).
6.Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D .
Disc. Cont. Dyn. System - B, 15( 2011), 57-71 (with S.J. Ding and C.Y. Wang).
5.Solutions of incompressible hydrodynamic flow of liquid crystals. Nonlinear Analysis:
Real World Applications, 12 (2011) 1510–1531 (with S.J. Ding).
4.Global Solutions to 1D Compressible Navier -Stokes equationswith Density dependent
Viscosity. Math. Meth. Appl. Sci., 34(2011), 1499-1511(with S.J. Ding, J.R. Huangand X. Liu).
3.Vortex dynamics of the anisotropic Ginzburg-Landau equation. Acta Mathematica
Scientia, 2010, 30B(3): 949–962 (with S.J. Ding).
2.Global solutions to one-dimensional compressible Navier-Stokes-Poisson
equations with density-dependent viscosity. J. Mathematical Physics,
50, 023101 (2009), 1-17 (with S.J. Ding, L. Yao and C.J. Zhu).
1.Global existence of strong solutions of the Navier-Stokes equations
for isentropic compressible fluids with density -dependent viscosity.
J. Math. Anal. Appl., 349 (2009) , 503–515 (with L. Yao).
獲獎榮譽
國家優秀青年科學基金項目獲得者,廣東省青年珠江學者。