深度學習(2022年清華大學出版社出版的圖書)

本詞條是多義詞,共12個義項
更多義項 ▼ 收起列表 ▲

《深度學習》是2022年清華大學出版社出版的圖書,作者是文龍、李新宇。

基本介紹

  • 中文名:深度學習
  • 作者:文龍、李新宇
  • 出版時間:2022年8月1日
  • 出版社:清華大學出版社
  • ISBN:9787302603917
  • 定價:26 元
內容簡介,圖書目錄,

內容簡介

深度學習已經廣泛的套用到智慧型製造的各個方面。本書以智慧型製造為背景,分別介紹了深度學習在故障診斷、表面缺陷預測、健康狀態評估等方面的工作。本書的內容不僅涵蓋了深度學習的基本概念和理論,更多的介紹了常見的深度學習模型及其實現方式,以通俗易懂的方式,為讀者呈現出深度學習的核心內容。突出為智慧型製造專業服務的主線,在案例的選取上,摒棄了傳統以圖像識別、自然語言處理為主的講解模式,通過選擇智慧型製造及智慧型製造系統中案例,指導讀者更好的了解深度學習的使用方法和技巧。本書介紹了深度學習的基本概念,常用的深度學習軟體等內容。以故障診斷、表面缺陷預測、健康狀態評估三個案例為主要內容,介紹了深度學習方法的套用。最後,介紹了自動深度學習方法的基本概念。本書適合於大專或本科院校的學生使用。

圖書目錄

第1章緒論
1.1人工智慧
1.1.1人工智慧的研究範疇
1.1.2人工智慧的三大學派
1.2機器學習
1.2.1機器學習的基本概念
1.2.2無監督學習、監督學習與強化學習
1.2.3淺層機器學習
1.3深度學習
1.3.1深度學習的發展歷程
1.3.2深度學習的套用
1.4習題
第2章深度學習基礎
2.1回歸和分類
2.1.1回歸模型
2.1.2分類模型
2.2人工神經網路
2.2.1MP神經元模型
2.2.2多層感知機
2.3激活函式
2.4損失函式
2.5批量
2.6正則化
2.7模型評估與驗證
2.8習題
第3章常用深度學習框架
3.1TensorFlow
3.2Keras
3.3PyTorch
3.4習題
第4章自編碼器及其套用示例
4.1自編碼器
4.1.1自編碼器的結構
4.1.2自編碼器的訓練方法
4.1.3自編碼器的TensorFlow實現
4.2自編碼器的變體
4.2.1稀疏自編碼器
4.2.2去噪自編碼器
4.2.3收縮自編碼器
4.3基於棧式自編碼器的故障預測方法
4.3.1棧式自編碼器
4.3.2軸承故障診斷套用案例
4.4習題
第5章卷積神經網路及其套用示例
5.1卷積神經網路
5.1.1卷積運算
5.1.2卷積層
5.1.3池化層
5.1.4其他卷積方式
5.2經典卷積神經網路模型
5.2.1LeNet5網路
5.2.2VGG網路
5.2.3Inception V3網路
5.2.4ResNet網路
5.2.5DenseNet網路
5.3基於細粒度模型的工業產品表面缺陷檢測方法
5.3.1細粒度圖像分類
5.3.2注意力機制
5.3.3基於細粒度的表面缺陷檢測方法
5.3.4表面缺陷檢測套用案例
5.4習題
第6章循環神經網路及其套用示例
6.1循環神經網路
6.1.1長短期記憶網路
6.1.2門控循環單元網路
6.1.3案例介紹
6.2自動機器學習
6.2.1超參數最佳化問題
6.2.2超參數最佳化方法
6.2.3基於自動機器學習的工件質量符合率預測案例
6.3基於超參數最佳化LSTM的鋰電池健康程度評估方法
6.3.1鋰電池數據集
6.3.2特徵構造與選擇
6.3.3基於長短期記憶網路的鋰電池健康狀態預測方法
6.4習題
參考文獻

相關詞條

熱門詞條

聯絡我們