《深度學習全書——公式+推導+代碼+TensorFlow全程案例》是2022年清華大學出版社出版的圖書,作者是洪錦魁、陳昭明。
基本介紹
- 書名:深度學習全書——公式+推導+代碼+TensorFlow全程案例
- 作者:洪錦魁、陳昭明
- 出版社:清華大學出版社
- 出版時間:2022年9月1日
- 定價:159 元
- ISBN:9787302610304
內容簡介,圖書目錄,
內容簡介
《深度學習全書——公式+推導+代碼+TensorFlow全程案例》共有15章,分為5部分,第一篇說明深度學習的概念,包括數理基礎,特點是結合編程解題,加深讀者印象,第二篇說明TensorFlow的學習地圖,從張量、自動微分、梯度下降乃至神經層的實踐,逐步解構神經網路,第三篇介紹CNN算法、影像套用、轉移學習等,第四篇則進入自然語言處理及語音識別的領域,介紹RNN/BERT/Transformer算法、相關套用等,最後,介紹了強化學習的基礎知識,包括馬爾可夫決策過程、動態規劃、蒙特卡洛、Q Learning算法,當然,還有相關案例實踐。
圖書目錄
第一篇 深度學習導論
第 1 章 深度學習導論 2
1-1 人工智慧的三波浪潮 2
1-2 AI 的學習地圖 4
1-3 機器學習套用領域 5
1-4 機器學習開發流程 6
1-5 開發環境安裝 7
第 2 章 神經網路原理 12
2-1 必備的數學與統計知識 12
2-2 線性代數 14
2-3 微積分 24
2-3-5 積分 37
2-4 機率與統計 41
2-4-1 數據類型 ……………… 42
2-4-2 抽樣 …………………… 43
2-4-3 基礎統計 ……………… 46
2-4-4 機率 …………………… 53
2-4-5 機率分布 ……………… 59
2-4-6 假設檢定 ……………… 69
2-5 線性規劃 78
2-6 普通最小二乘法與最大似然
估計法 81
2-6-1 普通最小二乘法 81
2-6-2 最大似然估計法 84
2-7 神經網路求解 88
2-3-1 微分 …………………… 24
2-3-2 微分定理 ……………… 29
2-3-3 偏微分 ………………… 32
2-3-4 簡單線性回歸求解 …… 36
深度學習全書——公式 + 推導 + 代碼 +TensorFlow 全程案例
第二篇 TensorFlow 基礎篇
第 3 章 TensorFlow 架 構 與
主要功能 98
3-1 常用的深度學習框架 98
3-2 TensorFlow 架構 99
3-3 張量運算 100
3-4 自動微分 105
3-5 神經網路層 109
第 4 章 神經網路實踐 114
4-1 撰寫第一個神經網路程式 114
4-1-1 最簡短的程式 114
4-1-2 程式強化 115
4-1-3 實驗 124
4-2 Keras 模型種類 129
4-2-1 Sequential model 129
4-2-2 Functional API 133
4-3 神 經層 135
4-3-1 完全連線神經層 135
4-3-2 Dropout Layer 137
4-4 激活函式 137
4-5 損失函式 142
4-6 優 化器 144
4-7 效果衡量指標 148
4-8 超參數調校 152
第 5 章 TensorFlow 其他常用
指令 156
5-1 特徵轉換 156
5-2 模型存檔與載入 157
5-3 模型匯總與結構圖 159
5-4 回調函式 161
5-4-1 EarlyStopping
Callbacks 162
5-4-2 ModelCheckpoint
Callbacks 163
5-4-3 TensorBoard Callbacks … 164
5-4-4 自定義 Callback 165
5-4-5 自定義 Callback 套用 … 168
5-4-6 總結 169
5-5 TensorBoard 169
5-5-1 TensorBoard 功能 169
5-5-2 測試 171
5-5-3 寫入圖片 172
5-5-4 直 方圖 173
5-5-5 效果調校 174
5-5-6 敏感度分析 175
5-5-7 總結 176
5-6 模型部署與 TensorFlow
Serving 176
5-6-1 自行開發網頁程式 176
5-6-2 TensorFlow Serving 178
5-7 TensorFlow Dataset 180
5-7-1 產生 Dataset 180
5-7-2 圖像 Dataset 184
5-7-3 TFRecord 與 Dataset … 186
5-7-4 TextLineDataset 189
5-7-5 Dataset 效果提升 191
第 6 章 卷積神經網路 193
6-1 卷積神經網路簡介 193
6-2 卷積 194
6-3 各式卷積 197
6-4 池 化層 201
6-5 CNN 模型實踐 202
6-6 影像數據增補 206
6-7 可解釋的 AI 211
第 7 章 預先訓練的模型 ………219
7-1 預先訓練的模型簡介 219
7-2 採用完整的模型 221
7-3 採用部分模型 225
7-4 轉移學習 229
7-5 Batch Normalization 說明 233
第三篇 進階的影像套用
第 8 章 目標檢測 238
8-1 圖像辨識模型的發展 238
8-2 滑動視窗 239
8-3 方向梯度直方圖 242
8-4 R-CNN 目標檢測 252
8-5 R-CNN 改良 263
8-6 YOLO 算法簡介 266
8-7 YOLO 環境配置 269
8-8 以 TensorFlow 實踐 YOLO
模型… 274
8-9 YOLO 模型訓練 280
8-10 SSD 算法 285
8-11 TensorFlow Object Detection
API 285
8-12 目標檢測的效果衡量指標 294
8-13 總結 295
第 9 章 進階的影像套用 296
9-1 語義分割介紹 296
9-2 自動編碼器 297
9-3 語義分割實踐 305
9-4 實例分割 311
9-5 風格轉換—人人都可以是
畢卡索 315
9-6 臉部辨識 327
9-6-1 臉部檢測 327
9-6-2 MTCNN 算法 332
9-6-3 臉部追蹤 334
9-6-4 臉部特徵點檢測 340
9-6-5 臉部驗證 346
9-7 光學文字辨識 349
9-8 車牌辨識 353
9-9 卷積神經網路的缺點 357
第 10 章 生成對抗網路 359
10-1 生成對抗網路介紹 359
10-2 生成對抗網路種類 361
10-3 DCGAN 364
10-4 Progressive GAN 375
10-5 Conditional GAN 380
10-6 Pix2Pix 385
10-7 CycleGAN 396
10-8 GAN 挑戰 406
10-9 深度偽造 406
深度學習全書——公式 + 推導 + 代碼 +TensorFlow 全程案例
第四篇 自然語言處理
第 11 章 自然語言處理的介紹 …412
11-1 詞袋與 TF-IDF 412
11-2 辭彙前置處理 416
11-3 詞 向量 421
11-4 GloVe 模型 433
11-5 中文處理 436
11-6 spaCy 庫 439
第 12 章 自然語言處理的算法 444
12-1 循環神經網路 444
12-2 長短期記憶網路 451
12-3 LSTM 重要參數與多層
LSTM 456
12-4 Gate Recurrent Unit 467
12-5 股價預測 468
12-6 注意力機制 475
12-7 Transformer 架構 485
12-7-1 Transformer 原理 486
12-7-2 Transformer 效能 487
12-8 BERT 488
12-8-1 Masked LM 488
12-8-2 Next Sentence
Prediction 489
12-8-3 BERT 效能微調 490
12-9 Transformers 庫 491
12-9-1 Transformers 庫範例 … 491
12-9-2 Transformers 庫效能
微調 501
12-9-3 後續努力 507
12-10 總結 507
第 13 章 聊天機器人 508
13-1 ChatBot 類別 508
13-2 ChatBot 設計 509
13-3 ChatBot 實踐 511
13-4 ChatBot 工具框架 514
13-4-1 ChatterBot 實踐 514
13-4-2 Chatbot AI 實踐 517
13-4-3 Rasa 實踐 520
13-5 Dialog?ow 實踐 523
13-5-1 Dialog?ow 安裝 525
13-5-2 Dialog?ow 基本功能 … 527
13-5-3 履行 532
13-6 總結 536
第 14 章 語 音 識別 537
14-1 語音基本認識 538
14-2 語音前置處理 549
14-3 語音相關的深度學習套用 561
14-4 自動語音識別 574
14-5 自動語音識別實踐 577
14-6 總結 578
第五篇 強化學習
第 15 章 強 化 學習 580
15-1 強化學習的基礎 581
15-2 強化學習模型 583
15-3 簡單的強化學習架構 586
15-4 Gym 庫 593
15-5 Gym 擴充功能 600
15-6 動態規劃 602
15-7 值 循環 607
15-8 蒙特卡洛 610
15-9 時序差分 619
15-10 其他算法 628
15-11 井字遊戲 630
15-12 木棒小車 636
15-13 總結 637