機械齒輪傳動

機械齒輪傳動

據史料記載,遠在公元前400~200年的中國古代就巳開始使用齒輪,在我國山西出土的青銅齒輪是迄今巳發現的最古老齒輪,作為反映古代科學技術成就的指南車就是以齒輪機構為核心的機械裝置。17世紀末,人們才開始研究,能正確傳遞運動的輪齒形狀。18世紀,歐洲工業革命以後,齒輪傳動的套用日益廣泛;先是發展擺線齒輪,而後是漸開線齒輪,一直到20世紀初,漸開線齒輪已在套用中占了優勢。

基本介紹

  • 中文名:齒輪
  • 外文名:chilun
介紹,工業發展,機構的類型,齒輪模數,主要參數,齒輪傳動,

介紹

早在1694年,法國學者Philippe De La Hire首先提出漸開線可作為齒形曲線。1733年,法國人M.Camus提出輪齒接觸點的公法線必須通過中心連線上的節點。一條輔助瞬心線分別沿大輪和小輪
的瞬心線(節圓)純滾動時,與輔助瞬心線固聯的輔助齒形在大輪和小輪上所包絡形成的兩齒廓曲線是彼此共軛的,這就是Camus定理。它考慮了兩齒面的嚙合狀態;明確建立了現代關於接觸點軌跡的
概念。1765年,瑞士的L.Euler提出漸開線齒形解析研究的數學基礎,闡明了相嚙合的一對齒輪,其齒形曲線的曲率半徑和曲率中心位置的關係。後來,Savary進一步完成這一方法,成為現在的Eu-let-Savary方程。對漸開線齒形套用作出貢獻的是Roteft WUlls,他提出中心距變化時,漸開線齒輪具有角速比不變的優點。1873年,德國工程師Hoppe提出,對不同齒數的齒輪在壓力角改變時的漸開線齒形,從而奠定了現代變位齒輪的思想基礎。
19世紀末,展成切齒法的原理及利用此原理切齒的專用工具機與刀具的相繼出現,使齒輪加工具軍較完備的手段後,漸開線齒形更顯示出巨大的優走性。切齒時只要將切齒工具從正常的嚙合位置稍加移動,就能用標準刀具在工具機上切出相應的變位齒輪。1908年,瑞士MAAG研究了變位方法並製造出展成加工插齒機,後來,英國BSS、美國AGMA、德國DIN相繼對齒輪變位提出了多種計算方法。
為了提高動力傳動齒輪的使用壽命並減小其尺寸,除從材料,熱處理及結構等方面改進外,圓弧齒形的齒輪獲得了發展。1907年,英國人Frank Humphris最早發表了圓弧齒形。1926年,瑞土人Eruest Wildhaber取得法面圓弧齒形斜齒輪的專利權。1955年,蘇聯的M.L.Novikov完成了圓弧齒形齒輪的實用研究並獲得列寧勳章。1970年,英國Rolh—Royce公司工程師R.M.Studer取得了雙圓弧齒輪的美國專利。這種齒輪現已日益為人們所重視,在生產中發揮了顯著效益。
齒輪是能互相嚙合的有齒的機械零件,它在機械傳動及整個機械領域中的套用極其廣泛。現代齒輪技術已達到:齒輪模數O.004~100毫米;齒輪直徑由1毫米~150米;傳遞功率可達 十萬千瓦;轉速可達 十萬轉/分;最高的圓周速度達300米/秒。
齒輪在傳動中的套用很早就出現了。公元前三百多年,古希臘哲學家亞里士多德在《機械問題》中,就闡述了用青銅或鑄鐵齒輪傳遞旋轉運動的問題。中國古代發明的指南車中已套用了整套的輪系。不過,古代的齒輪是用木料製造或用金 屬鑄成的,只能傳遞軸間的迴轉運動,不能保證傳動的平穩性,齒輪的承載能力也很小。
隨著生產的發展,齒輪運轉的平穩性受到重視。1674年丹麥天文學家羅默首次提出用外擺線作齒廓曲線,以得到運轉平穩的齒輪。
18世紀工業革命時期,齒輪技術得到高速發展,人們對齒輪進行了大量的研究。1733年法國數學家卡米發表了齒廓嚙合基本定律;1765年瑞士數學家歐拉建議採用漸開線作齒廓曲線。
19世紀出現的滾齒機和插齒機,解決了大量生產高精度齒輪的問題。1900年,普福特為滾齒機裝上差動裝置,能在滾齒機上加工出斜齒輪,從此滾齒機滾切齒輪得到普及,展成法加工齒輪占了壓倒優勢,漸開線齒輪成為套用最廣的齒輪。
1899年,拉舍最先實施了變位齒輪的方案。變位齒輪不僅能避免輪齒根切,還可以湊配中心距和提高齒輪的承載能力。1923年美國懷爾德哈伯最先提出圓弧齒廓的齒輪,1955年蘇諾維科夫對圓弧齒輪進行了深入的研究,圓弧齒輪遂得以套用於生產。這種齒輪的承載能力和效率都較高,但尚不及漸開線齒輪那樣易於製造,還有待進一步改進。
齒輪的組成結構一般有輪齒、齒槽、端面、法面、齒頂圓、齒根圓、基圓、分度圓。
輪齒簡稱齒,是齒輪上 每一個用於嚙合的凸起部分,這些凸起部分一般呈輻射狀排列,配對齒輪上的輪齒互相接觸,可使齒輪持續嚙合運轉;齒槽是齒輪上兩相鄰輪齒之間的空間;端面是圓柱齒輪或圓柱蝸桿上 ,垂直於齒輪或蝸桿軸線的平面;法面指的是垂直於輪齒齒線的平面;齒頂圓是指齒頂端所在的圓;齒根圓是指槽底所在的圓;基圓是形成漸開線的發生線作純滾動的圓;分度圓 是在端面內計算齒輪幾何尺寸的基準圓。
齒輪可按齒形、齒輪外形、齒線形狀、輪齒所在的表面和製造方法等分類。
齒輪的齒形包括齒廓曲線、壓力角、齒高和變位。漸開線齒輪比較容易製造,因此現代使用的齒輪中 ,漸開線齒輪占絕對多數,而擺線齒輪和圓弧齒輪套用較少。
在壓力角方面,小壓力角齒輪的承載能力較小;而大壓力角齒輪,雖然承載能力較高,但在傳遞轉矩相同的情況下軸承的負荷增大,因此僅用於特殊情況。而齒輪的齒高已標準化,一般均採用標準齒高。變位齒輪的優點較多,已遍及各類機械設備中。
另外,齒輪還可按其外形分為圓柱齒輪、錐齒輪、非圓齒輪、齒條、蝸桿蝸輪 ;按齒線形狀分為直齒輪、斜齒輪、人字齒輪、曲線齒輪;按輪齒所在的表面分為外齒輪、內齒輪;按製造方法可分為鑄造齒輪、切制齒輪、軋制齒輪、燒結齒輪等。
齒輪的製造材料和熱處理過程對齒輪的承載能力和尺寸重量有很大的影響。20世紀50年代前,齒輪多用碳鋼,60年代改用合金鋼,而70年代多用表面硬化鋼。按硬度 ,齒面可區分為軟齒面和硬齒面兩種。
軟齒面的齒輪承載能力較低,但製造比較容易,跑合性好, 多用於傳動尺寸和重量無嚴格限制,以及小量生產的一般機械中。因為配對的齒輪中,小輪負擔較重,因此為使大小齒輪工作壽命大致相等,小輪齒面硬度一般要比大輪的高 。
硬齒面齒輪的承載能力高,它是在齒輪精切之後 ,再進行淬火、表面淬火或滲碳淬火處理,以提高硬度。但在熱處理中,齒輪不可避免地會產生變形,因此在熱處理之後須進行磨削、研磨或精切 ,以消除因變形產生的誤差,提高齒輪的精度。
製造齒輪常用的鋼有調質鋼、淬火鋼、滲碳淬火鋼和滲氮鋼。鑄鋼的強度比鍛鋼稍低,常用於尺寸較大的齒輪;灰鑄鐵的機械性能較差,可用於輕載的開式齒輪傳動中;球墨鑄鐵可部分地代替鋼製造齒輪 ;塑膠齒輪多用於輕載和要求噪聲低的地方,與其配對的齒輪一般用導熱性好的鋼齒輪。
未來齒輪正向重載、高速、高精度和高效率等方向發展,並力求尺寸小、重量輕、壽命長和經濟可靠。
而齒輪理論和製造工藝的發展將是進一步研究輪齒損傷的機理,這是建立可靠的強度計算方法的依據,是提高齒輪承載能力,延長齒輪壽命的理論基礎;發展以圓弧齒廓為代表的新齒形;研究新型的齒輪材料和製造齒輪的新工藝; 研究齒輪的彈性變形、製造和安裝誤差以及溫度場的分布,進行輪齒修形,以改善齒輪運轉的平穩性,並在滿載時增大輪齒的接觸面積,從而提高齒輪的承載能力。
摩擦、潤滑理論和潤滑技術是 齒輪研究中的基礎性工作,研究彈性流體動壓潤滑理論,推廣採用合成潤滑油和在油中適當地加入極壓添加劑,不僅可提高齒面的承載能力,而且也能提高傳動效率。

工業發展

中國齒輪工業在“十五”期間得到了快速發展:2005年齒輪行業的年產值由2000年的240億元增加到683億元,年複合增長率23.27%,已成為中國機械基礎件中規模最大的行業。就市場需求與生產規模而言,中國齒輪行業在全球排名已超過義大利,居世界第四位。
2006年,中國全部齒輪、傳動和驅動部件製造企業實現累計工業總產值102628183千元,比上年同期增長24.15%;實現累計產品銷售收入98238240千元,比上年同期增長24.37%;實現累計利潤總額5665210千元,比上年同期增長26.85%。
2007年1-12月,中國全部齒輪、傳動和驅動部件製造企業實現累計工業總產值136542841千元,比上年同期增長30.96%;2008年1-10月,中國全部齒輪、傳動和驅動部件製造企業實現累計工業總產值144529138千元,比上年同期增長32.92%。
中國齒輪製造業與已開發國家相比還存在自主創新能力不足、新品開發慢、市場競爭無序、企業管理薄弱、信息化程度低、從業人員綜合素質有待提高等問題。現階段齒輪行業應通過市場競爭與整合,提高行業集中度,形成一批擁有幾十億元、5億元、1億元資產的大、中、小規模企業;通過自主智慧財產權產品設計開發,形成一批車輛傳動系(變速箱、驅動橋總成)牽頭企業,用牽頭企業的配套能力整合齒輪行業的能力與資源;實現專業化、網路化配套,形成大批有特色的工藝、有特色的產品和有快速反應能力的名牌企業;通過技改,實現現代化齒輪製造企業轉型。
“十一五”末期,中國齒輪製造業年銷售額可達到1300億元,人均銷售額上升到65萬元/年,在世界行業排名中達到世界第二。2006-2010年將新增設備10萬台,即每年用於新增設備投資約60億元,新購工具機2萬台,每台平均單價30萬元。到2010年,中國齒輪製造業應有各類工具機總數約40萬台,其中數控工具機10萬台,數控化率25%(高於機械製造全行業平均值17%)。

機構的類型

以傳動比分類
定傳動比 —— 圓形齒輪機構(圓柱、圓錐)
變傳動比 —— 非圓齒輪機構(橢圓齒輪)
以輪軸相對位置分類
平面齒輪機構
直齒圓柱齒輪傳動
外嚙合齒輪傳動
內嚙合齒輪傳動
齒輪齒條傳動
斜齒圓柱齒輪傳動
人字齒輪傳動
空間齒輪機構
圓錐齒輪傳動
交錯軸斜齒輪傳動
蝸輪蝸桿傳動
齒輪的工藝:
錐形齒輪
毛坯半制品齒輪
螺旋齒輪
內齒輪
直齒輪
蝸輪蝸桿

齒輪模數

“模數”是指相鄰兩輪齒同側齒廓間的齒距t與圓周率π的比值(m=t/π),以毫米為單位。模數是模數制輪齒的一個最基本參數。模數越大,輪齒越高也越厚,如果齒輪的齒數一定,則輪的徑向尺寸也越大。模數系列標準是根據設計、製造和檢驗等要求制訂的。對於具有非直齒的齒輪,模數有法向模數mn、端面模數ms與軸向模數mx的區別,它們都是以各自的齒距(法向齒距、端面齒距與軸向齒距)與圓周率的比值,也都以毫米為單位。對於錐齒輪,模數有大端模數me、平均模數mm和小端模數m1之分。對於刀具,則有相應的刀具模數mo等。標準模數的套用很廣。在公制的齒輪傳動、蝸桿傳動、同步齒形帶傳動和棘輪、齒輪聯軸器、花鍵等零件中,標準模數都是一項最基本的參數。它對上述零件的設計、製造、維修等都起著基本參數的作用(見圓柱齒輪傳動、蝸桿傳動等)。
齒輪計算公式:
分度圓直徑 d=mz m 模數 z 齒數
齒頂高 ha=ha* m
齒根高 hf=(ha*+c*)m
齒全高 h=ha+hf=(z ha*+c*)m
ha*=1 c*=0.25

主要參數

螺旋角:β > 0為左旋,反之為右旋
齒距:pn = ptcosβ,下標n和t分別表示法向和端面
模數:mn = mtcosβ
齒寬:
分度圓直徑:d = mtz
中心距:
正確嚙合條件:m1 = m2,α1 = α2,β1 = − β2
重合度:
當量齒數:
齒輪振動的簡易診斷方法
進行簡易診斷的目的是迅速判斷齒輪是否處於正常工作狀態,對處於異常工作狀態的齒輪進一步進行精密診斷分析或採取其他措施。當然,在許多情況下,根據對振動的簡單分析,也可診斷出一些明顯的故障。
齒輪的簡易診斷包括噪聲診斷法、振平診斷法以及衝擊脈衝(SPM)診斷法等,最常用的是振平診斷法。
振平診斷法是利用齒輪的振動強度來判別齒輪是否處於正常工作狀態的診斷方法。根據判定指標和標準不同,又可以分為絕對值判定法和相對值判定法。
1.絕對值判定法
絕對值判定法是利用在齒輪箱上同一測點部位測得的振幅值直接作為評價運行狀態的指標。
用絕對值判定法進行齒輪狀態識別,必須根據不同的齒輪箱,不同的使用要求制定相應的判定標準。
制定齒輪絕對值判定標準的主要依據如下:
1)對異常振動現象的理論研究;
(2)根據實驗對振動現象所做的分析;
(3)對測得數據的統計評價;
(4)參考國內外的有關標準。
實際上,並不存在可適用於一切齒輪的絕對值判定標準,當齒輪的大小、類型等不同時,其判定標準自然也就不同。
按一個測定參數對寬頻的振動做出判斷時,標準值一定要依頻率而改變。頻率在1kHz以下,振動按速度來判定;頻率在1kHz以上,振動按加速度來判定。實際的標準還要根據具體情況而定。
2.相時值判定法
在實際套用中,對於尚未制定出絕對值判定標準的齒輪,可以充分利用現場測量的數據進行統計平均,制定適當的相對判定標準,採用這種標準進行判定稱為相對值判定法。
相對判定標準要求將在齒輪箱同一部位測點在不同時刻測得的振幅與正常狀態下的振幅相比較,當測量值和正常值相比達到一定程度時,判定為某一狀態。比如,相對值判定標準規定實際值達到正常值的1.6~2倍時要引起注意,達到2.56~4倍時則表示危險等。至於具體使用時是按照1.6倍進行分級還是按照2倍進行分級,則視齒輪箱的使用要求而定,比較粗糙的設備(例如礦山機械)一般使用倍數較高的分級。
實際中,為了達到最佳效果,可以同時採用上述兩種方法,以便對比比較,全面評價

齒輪傳動

齒輪傳動是利用兩齒輪的輪齒相互嚙合傳遞動力和運動的機械傳動。按齒輪軸線的相對位置分平行軸圓柱齒輪傳動、相交軸圓錐齒輪傳動和交錯軸螺旋齒輪傳動。具有結構緊湊、效率高、壽命長等特點。
齒輪傳動是指用主、從動輪輪齒直接、傳遞運動和動力的裝置。
在所有的機械傳動中,齒輪傳動套用最廣,可用來傳遞任意兩軸之間的運動和動力。
齒輪傳動的特點是:齒輪傳動平穩,傳動比精確,工作可靠、效率高、壽命長,使用的功率、速度和尺寸範圍大。例如傳遞功率可以從很小至幾十萬千瓦;速度最高可達300m/s;齒輪直徑可以從幾毫米至二十多米。但是製造齒輪需要有專門的設備,嚙合傳動會產生噪聲。
齒輪傳動的類型很多。
(1)根據兩軸的相對位置和輪齒的方向,可分為以下類型:
<1>圓柱<3>;
<2>錐齒輪傳動;
<3>交錯軸斜齒輪傳動。
(2)根據齒輪的工作條件,可分為:
<1>開式齒輪傳動式齒輪傳動,齒輪暴露在外,不能保證良好的潤滑。
<2>半開式齒輪傳動,齒輪浸入油池,有護罩,但不封閉。
<3>閉式齒輪傳動,齒輪、軸和軸承等都裝在封閉箱體內,潤滑條件良好,灰沙不易進入,安裝精確,
齒輪傳動有良好的工作條件,是套用最廣泛的齒輪傳動。
==================================================================
齒輪傳動的設計準則
針對齒輪五種失效形式,應分別確立相應的設計準則。但是對於齒面磨損、塑性變形等,由於尚未建立起廣為工程實際使用而且行之有效的計算方法及設計數據,所以目前設計齒輪傳動時,通常只按保證齒根彎曲疲勞強度及保證齒面接觸疲勞強度兩準則進行計算。對於高速大功率的齒輪傳動(如航空發動機主傳動、汽輪發電機組傳動等),還要按保證齒面抗膠合能力的準則進行計算(參閱GB6413-1986)。至於抵抗其它失效能力,目前雖然一般不進行計算,但應採取的措施,以增強輪齒抵抗這些失效的能力。
1、閉式齒輪傳動
由實踐得知,在閉式齒輪傳動中,通常以保證齒面接觸疲勞強度為主。但對於齒面硬度很高、齒芯強度又低的齒輪(如用20、20Cr鋼經滲碳後淬火的齒輪)或材質較脆的齒輪,通常則以保證齒根彎曲疲勞強度為主。如果兩齒輪均為硬齒面且齒面硬度一樣高時,則視具體情況而定。
功率較大的傳動,例如輸入功率超過75kW的閉式齒輪傳動,發熱量大,易於導致潤滑不良及輪齒膠合損傷等,為了控制溫升,還應作散熱能力計算。
2、開式齒輪傳動
開式(半開式)齒輪傳動,按理應根據保證齒面抗磨損及齒根抗折斷能力兩準則進行計算,但如前所述,對齒面抗磨損能力的計算方法迄今尚不夠完善,故對開式(半開式)齒輪傳動,目前僅以保證齒根彎曲疲勞強度作為設計準則。為了延長開式(半開式)齒輪傳動的壽命,可視具體需要而將所求得的模數適當增大。

相關詞條

熱門詞條

聯絡我們