模糊聯想記憶

模糊聯想記憶

模糊聯想記憶(Fuzzy Associative Memory,簡稱FAM)是通過一定的對應關係將一個論域中的模糊子集映射到另一個論域中,即要將一個立方體映射到另一個立方體,這種映射關係叫做“聯想記憶”,在模糊系統里具體稱為模糊聯想記憶。

基本介紹

  • 中文名:模糊聯想記憶
  • 外文名:fuzzy associative memory
  • 簡稱:FAM
  • 學科:控制科學與工程
  • 提出者:Kosko
  • 提出時間 :1991年
基本概念,模糊聯想記憶模型,模糊聯想記憶推理機,模糊聯想記憶與模糊關係方程,模糊聯想記憶與神經元聯想記憶,相同點,不同點,套用,

基本概念

模糊聯想記憶(Fuzzy Associative Memory,簡稱FAM)即通過一定的對應關係將一個論域中的模糊子集映射到另一個論域中,即要將一個立方體映射到另一個立方體,這種映射關係叫做“聯想記憶”,在模糊系統里具體稱為模糊聯想記憶。模糊聯想記憶模型是一個兩層前饋異聯想模糊分類器,或者說是一個模糊映射系統。

模糊聯想記憶模型

模糊聯想記憶(FAM)模型( Kosko , 1991)是一個兩層前饋異聯想模糊分類器,或者說是一個模糊映射系統。如概述圖所示,輸入為模糊變數A,它是一個n維矢量,通過m條規則,映射到p維模糊矢量B上。FAM系統通過學習可存儲任意模糊空間模式對
,用模糊集表達的第k個模式對為:
為:
模糊聯想記憶
這裡,
是模糊變數A中第i個元素的隸屬度
是模糊變數B中第i 個元素的隸屬度,“。”表示合成運算,
是一個n×p的模糊矩陣。在FAM中,
代表了第k 條推理規則,它是蘊函句" If X is
then Y is
"的簡寫形式。FAM規則也可表達多前提規則,如
,即表示"If X is
and Y is
then Z is
"。
每一條規則都對應了一個模糊矩陣
,各條規則獨立存放在FAM系統中,這樣做的好處是可以靈活方便地增、刪或修改規則,在推理時又可以清楚地了解FAM系統中每條規則對輸出模糊矢量B的貢獻是多少。

模糊聯想記憶推理機

由FAM學習網路得到的規則可供FAM推理機進行推理。
模糊聯想記憶
圖1
如圖1所示,若在FAM系統中有m條規則,輸入為一個P維的模糊矢量A(通常輸入為確切的數值,需經模糊化處理)。它不同程度地並行激活相應的FAM規則
,並得到輸出
,這樣,m條規則可能產生m個子結論
。將m 個子結論按下式進行歸一化加權求和便得到FAM的最後輸出B
模糊聯想記憶
其中, 權係數
反映了第k條規則在推理或聯想中的強度值,最後經過去模糊化得到具體的數值
。通常去模糊化(清晰化)方法一般有兩種:
(1)最大隸屬函式法
若以
表示B的隸屬函式,則按峰值法確定的數值
。其中,
滿足
模糊聯想記憶
最大隸屬函式法存在兩個主要問題:第一, 當
的形狀有多個等高峰值時,按上式求得
的不唯一;第二,該方法在很大程度上忽略了
形狀所包含的信息。
(2)重心法
與最大隸屬函式法相比較,重心法注重的不是
的峰值,而是
的整個形狀。這時
模糊聯想記憶

模糊聯想記憶與模糊關係方程

一個模糊聯想記憶網路用於存儲p個模糊模式對
,k =1 , … ,p,其中
。在網路的拓撲結構中,
為第i個輸人神經元到第j個輸出神經元之間的連線權,其值也在(0,1)範圍內。對於由最大一最小合成神經元組成的模糊聯想記憶網路,完整的模式對回想意味著存在連線權矩陣W使下式成立
模糊聯想記憶
式中“ 。”表示最大-最小合成運算,上式實際上為一組最大-最小合成模糊關係方程,因此,確定模糊聯想記憶網路的連線權矩陣W,也就是求解模糊關係方程組。直觀地,連線權矩陣W可由下式求出
式中“
”表示某種蘊涵運算,中間矩陣用於記錄第k個模式對聯想
當給網路提供輸入模式
時,網路用最大一最小合成運算回想出輸出模式
,用逐點方式可表示為
式中“
” 表示最小運算, “
” 表示最大運算。
Kosko採用最小蘊涵將第k個模式對
編碼到中間矩陣
中, 然後用最大疊加運算將p個
組合到連線權矩陣W中。用逐點方式,模糊赫布規則可表示為
從上述式子可以看出,對於任意的輸入模式A,回想出的模式B總是下邊模式的子集:

模糊聯想記憶與神經元聯想記憶

相同點

(1)都是model-free
(2)都可以從樣本或實例中學習
(3)都使用數值運算

不同點

(1)所用的樣本形式不同
(2)存儲的形式不同
(3)如何聯想(推理)或如何把輸入映射到輸出的方式不同

套用

FAM模糊神經網路的使用,在實際進行學習時還需注意如下幾點:
(1)輸入、輸出語言值集合的劃分應根據樣本的群集情況,劃分時要儘可能將群集的樣本劃在一個虛規則區域內。
(2)競爭突觸向量數目q應大於虛規則數。通常q太大時,學習疊代時間長;q過小時,結論重複性差。實際學習時可取q=1~2N ,這裡N為學習樣本數。
(3)學習次數n對學習結果也有一定影響。 n太大時,學習時間長;n太小時,結論重複性差,通常應選取n≥ 1000次。

相關詞條

熱門詞條

聯絡我們