梅西納多項式定義為M_n(x,\beta,\gamma)=\sum_{k=0}^n(-1)^k{n\choosek}{x\choosek}k!(x-\beta)_{n-k}\gamma^{-k}
梅西納多項式的前幾項為: Mx:=[-\beta-(1-\gamma)*x/\gamma]
梅西納多項式定義為
M_n(x,\beta,\gamma)=\sum_{k=0}^n(-1)^k{n\choosek}{x\choosek}k!(x-\beta)_{n-k}\gamma^{-k}
梅西納多項式的前幾項為:
Mx:=[-\beta-(1-\gamma)*x/\gamma]
Mx:=[(\gamma^2*\beta^2-\beta*\gamma^2)/\gamma^2+(\gamma^2-2*\beta*\gamma^2-1+2*\gamma*\beta)*x/\gamma^2+(-2*\gamma+1+\gamma^2)*x^2/\gamma^2]
M_n(x,\beta,\gamma)=\sum_{k=0}^n(-1)^k{n\choosek}{x\choosek}k!(x-\beta)_{n-k}\gamma^{-k}
梅西納多項式的前幾項為:
Mx:=[-\beta-(1-\gamma)*x/\gamma]
Mx:=[(\gamma^2*\beta^2-\beta*\gamma^2)/\gamma^2+(\gamma^2-2*\beta*\gamma^2-1+2*\gamma*\beta)*x/\gamma^2+(-2*\gamma+1+\gamma^2)*x^2/\gamma^2]