人物經歷
教育經歷
研究工作經歷
2014/12-2017/12,湘潭大學材料科學與工程學院,講師
2018/01-2021/12,湘潭大學材料科學與工程學院,副教授
2022/01-至今,湘潭大學材料科學與工程學院,教授(破格)
2019/01-至今,湘潭大學材料科學與工程學院,博士生導師(破格)
研究方向
超高溫塗層的製備及其抗燒蝕性能研究;
熱障塗層高溫力學性能表征;
熱障塗層服役模擬考核與實時檢測;
熱障塗層的失效機理與可靠性評價
個人簡介
朱旺,男,1988 年生,博士,
教授(破格),
博士生導師(破格)。湖南省首屆荷尖人才,湖南省優秀青年基金獲得者,湖南省優秀博士學位論文獲得者,韶峰學者。現為國防科技重點實驗室副主任,湖南省力學學會理事。
長期致力於
高溫熱防護塗層高溫力學性能表征、
服役環境模擬與失效實時檢測、
破壞機理和可靠性評價研究,成果套用於航發系統11個單位及其10餘個型號。主持JWGF重點項目子課題、ZFB裝備預先研究領域基金(快速扶持項目)、
國家自然科學基金青年項目、湖南省優秀青年基金、航發企業橫向課題(16項)等項目,同時作為核心成員參與了多項國家自然科學基金重大項目、重點項目等項目的研究。在Springer Nature Singapore出版商出版《
Thermal Barrier Coatings:
Failure Theory and Evaluation Technology》專著1部(排名第三),在科學出版社出版
《熱障塗層破壞理論與評價技術》專著1部(排名第三),以第一/通訊作者在J. Mech. Phys. Solids,Int. J. Plasticity,Corros. Sci.,J. Eur. Ceram. Soc.,J. Am. Ceram. Soc.等期刊發表SCI論文28篇,申請國家發明專利5項(實審),授權國家發明專利6項;制定
《航空發動機熱障塗層試驗驗證方法》國軍標1套(排名第三),含11個標準;2020年獲得湖南省自然科學一等獎1項(排名第六),2022年獲得湖南省教學成果獎一等獎1項(排名第五)。擔任Coatings雜誌特刊“Preparation and Failure Mechanism of Thermal Barrier Coatings”客座編輯。
主講課程
獲獎情況
湖南省優秀青年基金獲得者(湖南省優青)
湖南省優秀博士學位論文獎
湖南省首屆荷尖人才
亞太材料青年科學家論壇優秀邀請報告獎
北京大學力學全國博士生論壇優秀報告獎
中國有色金屬科技論文獎優秀獎
湖南省自然科學獎一等獎
湖南省教學成果獎一等獎
湖南省優秀研究生導師團隊
麓山杯創新創業大賽決賽二等獎
科研項目
1. 湖南省荷尖人才項目(編號:2022RC1082),2023/01-2025/12,在研,主持。
2. 湖南自然科學基金優秀青年基金項目,基於特徵頻譜視窗的複雜服役環境下熱障塗層損傷識別與表征方法(編號:2020JJ3031),2020/01-2022/12,在研,主持。
3. 湖南省教育廳重點項目,1600℃下新型A6Ta2O17熱障塗層高溫力學性能原位表征及失效機理(編號:21A0120),2022/01-2024/12,在研,主持。
4. 國家自然科學基金青年項目,TGO本構關係溫度相關性的DIC表征及機制(編號:11602211),2017/01-2019/12,結題,主持。
5. 湖南省教育廳優秀青年項目,TGO生長過程中應力應變關係的DIC表征(編號:16B249),2017/01-2019/12,結題,主持。
6. 湖南省自然科學基金青年項目,熱力化多場耦合作用下熱障塗層界面氧化的失效分析(編號:2017JJ3307),2017/01-2019/12,結題,主持。
主要代表性論文
[1] Z.Y. Tan, X. Wu, W. Zhu*, J.W. Guo, W. Wang, Z.S. Ma. Ultra-high hardness induced by W precipitation within Ta-Hf-W-C ultra-high temperature ceramic coatings. Journal of the European Ceramic Society, 2022, 42: 6288-6294.
[2] S. Liu, X.P. Hu, Q. Liu, J.W. Guo, J.Y. Wu, W. Zhu*. Effect of HfO2 content on CMAS corrosion resistance of a promising Hf6Ta2O17 ceramic for thermal barrier coatings. Corrosion Science, 2022, 208: 110712-110721.
[3] Z.Y. Tan, X. Wu, J.W. Guo, W. Zhu*. Toughness mechanism and plastic insensitivity of submicron second phase Ta in a novel Ta-Hf6Ta2O17 composite ceramic. Ceramics International, 2022 (In press).
[4] Q. Liu, X.P. Hu, W. Zhu*, G.L. Liu, J.W. Guo, J. Bin. Thermal shock performance and failure behavior of Zr6Ta2O17-8YSZ double-ceramic-layer thermal barrier coatings prepared by atmospheric plasma spraying. Ceramics International, 2022, 48: 24402-24410.
[5] Z.P. Zhou, W.Z. Yuan, W. Zhu*, X.P. Hu, Y. Zou, Q. Wu, H.Q. Wei. In situ measurements of the high-temperature mechanical properties of ZrO2-doped YTaO4 ceramic by three-point bending combined with a digital image correlation method. Ceramics International, 2022, 48: 1323-1331.
[6] Y. Zou, L.F. Ge, Z.Y. Li, J.W. Guo, W. Zhu*, Z.S. Ma. Determination of the intrinsic elastic modulus, hardness and fracture strength of thermally growth oxide by nanoindentation and tensile tests. Engineering Failure Analysis, 2022, 131: 105815.
[7] Z.Y. Tan, X. Wu, G. Yang, J.W. Guo, W. Zhu*. Structure, mechanical, and micro-scratch behavior of Ta-Hf-C solid solution coating deposited by non-reactive magnetron sputtering. Materials, 2022, 15: 4489-4500.
[8] Z.H. Xie, Q. Liu, K.I. Lee, W. Zhu*, L.T. Wu, R.T. Wu. The effect of bond coat roughness on the CMAS hot corrosion resistance of EB-PVD thermal barrier coatings. Coatings, 2022, 12: 591-605.
[9] X.P. Hu, G.L. Liu, Q. Liu, W. Zhu*, S. Liu, Z.S. Ma. Failure mechanism of EB-PVD thermal barrier coatings under the synergistic effect of thermal shock and CMAS corrosion. Coatings, 2022, 12: 1290-1301.
[10] Z.Y. Tan, C. Luo, W. Zhu*, L. Yang, Y.C. Zhou, Q. Wu. Reactive plasma spraying of supersaturated tungsten super-hard Ta-Hf-W-C solid solution coating. Journal of the European Ceramic Society, 2021, 41: 6772–6777.
[11] Q. Liu, X.P. Hu, W. Zhu*, J.W. Guo, Z.Y. Tan. Effects of Ta2O5 content on mechanical properties and high-temperature performance of Zr6Ta2O17 thermal barrier coatings. Journal of the American Ceramic Society, 2021, 104: 6533–6544.
[12] K. Yuan, L. Yang, Q. Wang, F. Zhang, W. Zhu*, Y.C. Zhou. Al2O3-TiO2 codoped YSZ thermal barrier coatings resistant to damage by molten calcium-magnesium-alumino-silicate (CMAS) glass. Advanced Engineering Materials, 2021, 2001338.
[13] Y.Q. Xiao, L. Yang, W. Zhu*, Y.C. Zhou, Z.P. Pi, Y.G. Wei. Delamination mechanism of thermal barrier coatings induced by thermal cycling and growth stresses. Engineering Failure Analysis, 2021, 121: 105202.
[14] Z.Y. Tan, W. Zhu*, L. Yang, Y.C. Zhou, Q. Wu, L.J. Gong. Microstructure, mechanical properties and ablation behavior of ultra-high temperatureTa-Hf-C solid solution coating prepared by a step-by-step plasma solid solution method. Surface and Coatings Technology, 2020, 403: 126405.
[15] Z.Y. Tan, Z.H. Yang, W. Zhu*, L. Yang, Y.C. Zhou, X.P. Hu. Mechanical properties and calcium-magnesium-alumino-silicate (CMAS) corrosion behavior of a promising Hf6Ta2O17 ceramic for thermal barrier coatings. Ceramics International, 2020, 46: 25242-25248.
[16] W. Zhu, C.X. Zhang, L. Yang, Y.C. Zhou, Z.Y. Liu. Real-time detection of damage evolution and fracture of EB-PVD thermal barrier coatings under thermal shock: An acoustic emission combined with digital image correlation method. Surface and Coatings Technology, 2020, 399: 126151.
[17] W. Zhu, Q. Wu, L. Yang, Y. C. Zhou. In situ characterization of high temperature elastic modulus and fracture toughness in air plasma sprayed thermal barrier coatings under bending by using digital image correlation. Ceramics International, 2020, 46: 18526–18533.
[18] W. Zhu, Z. Y. Li, L. Yang, Y. C. Zhou, J. F. Wei. Real-time detection of CMAS corrosion failure in APS thermal barrier coatings under thermal shock. Experimental Mechanics, 2020, 60: 775–785.
[19] W. Zhu, H. Y. Chen, L. Yang, Y. C. Zhou, G. N. Xu. Phase field model for diffusion-reaction stress field in the thermal barrier coatings corroded by the molten CMAS. Engineering Failure Analysis, 2020, 111: 104486.
[20] Z.Y. Liu, W. Zhu, L. Yang, Y.C. Zhou. Numerical prediction of thermal insulation performance and stress distribution of thermal barrier coatings coated on a turbine vane. International Journal of Thermal Sciences, 2020, 158: 106552.
[21] W. Zhu, X. N. Cai, L. Yang, J. Xia, Z. P. Pi, Y. C. Zhou. The evolution of pores in thermal barrier coatings under volcanic ash corrosion using X-ray computed tomography. Surface and Coatings Technology, 2019, 357: 372–378.
[22] W. Zhu, Z. B. Zhang, L. Yang, Y. C. Zhou, Y. G. Wei. Spallation of thermal barrier coatings with real thermally grown oxide morphology under thermal stress. Materials & Design, 2018, 146C: 180–193.
[23] W. Zhu, Y. J. Jin, L. Yang, Z. P. Pi, Y. C. Zhou. Fracture mechanism maps for thermal barrier coatings subjected to single foreign object impacting. Wear, 2018, 414-415: 303–309.
[24] W. Zhu, J. W. Wang, L. Yang, Y. C. Zhou, Y. G. Wei, R. T. Wu. Modeling and simulation of the temperature and stress fields in a 3D turbine blade coated with thermal barrier coatings. Surface and Coatings Technology, 2017, 315: 443-453.
[25] W. Zhu, L. Yang, J. W. Guo, Y. C. Zhou, C. Lu. Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model. International Journal of Plasticity, 2015, 64: 76–87.
[26] W. Zhu, Y. C. Zhou, J. W. Guo, L. Yang, C. Lu. Quantitative characterization of the interfacial adhesion of Ni thin films on steel substrates: a compression-induced buckling delamination test.Journal of the Mechanics and Physics of Solids, 2015, 74: 19–37.
[27] W. Zhu, M. Cai, L. Yang, J. W. Guo, Y. C. Zhou, C. Lu. The effect of the morphology of thermally grown oxide on the stress field in a turbine blade with thermal barrier coatings. Surface and Coatings Technology, 2015, 276: 160–167.
[28] W. Zhu, L. Yang, J. W. Guo, Y. C. Zhou, C. Lu. Numerical study on interaction of surface cracking and interfacial delamination in thermal barrier coatings under tension. Applied Surface Science, 2014, 315: 292–298.
[29] G. N. Xu. L. Yang, Y. C. Zhou, Z. P. Pi, W. Zhu. A chemo-thermo-mechanically constitutive theory for thermal barrier coatings under CMAS infiltration and corrosion. Journal of the Mechanics and Physics of Solids, 2019, 133: 103710.
[30] B. B. Yin, F. Zhang, W. Zhu, L. Yang, Y. C. Zhou. Effect of Al2O3 modification on the properties of YSZ: corrosion resistant, wetting and thermal-mechanical properties. Surface and Coatings Technology, 2019, 357: 161-171.
[31] Z. P. Pi, F. Zhang, J. B. Chen, W. Zhu, L. Yang, Y. C. Zhou. Multiphase field theory for ferroelastic domain switching with an application to tetragonal zirconia. Computational Materials Science, 2019, 170: 109165.
[32] L. Yang, W. Zhu, C. F. Li, Y. C. Zhou*, N. G. Wang, Y. G. Wei. Error and modification in thermal barrier coatings measurement using impendence spectroscopy. Ceramics International, 2017, 43: 4976-4983.
[33] L. Yang, J. Yang, J. Xia, W. Zhu, Y. C. Zhou, Y. G. Wei, R. T. Wu. Characterization of the strain in the thermal barrier coatings caused by molten CaO-MgO-Al2O3-SiO2 using a digital image correlation technique. Surface and Coatings Technology, 2017, 322: 1-9.
[34] Q. Shen, L. Yang, Y. C. Zhou, W. G. Wei, W. Zhu. Effects of growth stress in finite-deformation thermally grown oxide on failure mechanism of thermal barrier coatings. Mechanics of Materials, 2017, 114: 228-242.
[35] L. Yang, H. L. Li, Y. C. Zhou, W. Zhu, Y. G. Wei, J. P. Zhang. Erosion failure mechanism of EB-PVD thermal barrier coatings with real morphology. Wear, 2017, 392-393: 99-108.
[36] N. G. Wang, C. F. Li, L. Yang, Y. C. Zhou, W. Zhu, C. Y. Cai. Experimental testing and FEM calculation of impedance spectra of thermal barrier coatings: effect of measuring conditions. Corrosion Science, 2016, 107: 155-171.
[37] W. Z. Tang, L. Yang, W. Zhu, Y. C. Zhou, J. W. Guo, C. Lu. Numerical simulation of temperature distribution and thermal-stress field in a turbine blade with multilayer-structure TBCs by a fluid-solid coupling method. Journal of Materials Science & Technology, 2016, 32: 452-458.
[38] L. Yang, Z. C. Zhong, Y. C. Zhou, W. Zhu, Z. B. Zhang, C. Y. Cai, C. Lu. Acoustic emission assessment of interface cracking in thermal barrier coatings. Acta Mechanica Sinica, 2016, 32: 342-348.
[39] J. W. Guo, L. Yang, Y. C. Zhou, L. M. He, W. Zhu, C. Y. Cai, C. Lu. Reliability assessment on interfacial failure of thermal barrier coatings. Acta Mechanica Sinica, 2016, 32: 912-924.
[40] L. Yang, H. S. Kang, Y. C. Zhou, W. Zhu, C. Y. Cai, C. Lu. Frequency as a key parameter in discriminating the crack modes of thermal barrier coatings: cluster analysis of acoustic emission signals. Surface and Coatings Technology, 2015, 264: 97–104.
發明專利
[1] 朱旺, 譚振宇, 楊麗, 周益春. 一種強韌化超高緻密度抗超高溫燒蝕塗層及其製備方法. 中國發明專利, 授權專利號:ZL 202010740164.3, 2022.
[2] 朱旺, 譚振宇, 楊麗, 周益春. 一種超高溫陶瓷塗層及其複合材料、製備方法. 中國發明專利, 授權專利號:ZL 202010740168.1, 2021.
[3] 朱旺, 譚振宇, 楊麗, 周益春. 一種熱障塗層高溫沖蝕的檢測方法. 中國發明專利, 授權專利號:ZL 201910219258.3, 2020.
[4] 朱旺, 石黎, 楊麗, 張春興, 周益春. 一種工作葉片熱障塗層服役載荷的等效載入裝置及方法. 中國發明專利, 授權專利號:ZL 201811506720.X, 2020.
[5] 朱旺, 羅毅, 楊麗, 周益春. 一種熱障塗層服役工況模擬試驗用渦輪模型. 中國發明專利, 授權專利號:ZL 201811505725.0, 2020.
[6] 朱旺, 譚振宇, 楊麗, 周益春. 一種金屬碳化合物塗層及其製備方法. 中國發明專利, 授權專利號:ZL 201910093291.6, 2020.
[7] 楊麗, 石黎, 朱旺, 張春興, 周益春. 一種渦輪葉片熱障塗層服役載荷的等效載入裝置及方法. 中國發明專利, 授權專利號:ZL 201811505740.5, 2020.
[8] 楊麗, 羅毅, 朱旺, 周益春. 一種熱障塗層服役工況模擬試驗用渦輪模型. 中國發明專利, 授權專利號:ZL 201811506732.2, 2020.
[9] 楊麗, 劉志遠, 朱旺, 周益春. 一種渦輪葉片熱障塗層的冷卻工況載入設備. 中國發明專利, 授權專利號:ZL 201811505711.9, 2020.
[10] 楊麗, 劉志遠, 周益春, 朱旺. 一種渦輪葉片熱障塗層套用效果的評價方法. 中國發明專利, 授權專利號:ZL 201811173708.1, 2020.
[11] 楊麗, 周益春, 劉志遠, 羅毅, 朱旺. 一種渦輪葉片熱障塗層工況模擬實驗測試系統. 中國發明專利, 授權專利號:ZL 201811505735.4, 2020.
[12] 楊麗, 周益春, 謝志航, 蔡書漢, 朱旺. 一種原位補氧型掃描式電子束氣相沉積(IOC-SEVD)裝置及其方法. 中國發明專利, 授權專利號:ZL 201810008839.8, 2020.
[13] 楊麗, 譚明, 周益春, 周文峰, 朱旺, 李朝陽. 模擬熱障塗層服役環境的火焰噴射裝置及火焰噴射方法. 中國發明專利, 授權專利號:ZL 201810008840.0, 2019.
[14] 楊麗, 朱旺, 湯文章, 周益春. 塗有熱障塗層的器件的工況模擬方法. 中國發明專利, 授權專利號:ZL 201510534531.3, 2018.
[15] 楊麗, 朱旺, 齊莎莎, 周益春. 一種建立含缺陷的材料模型的有限元建模方法. 中國發明專利, 授權專利號:ZL 201510535275.X, 2018.
[16] 楊麗, 肖逸奇, 周益春, 朱旺. 熱障塗層沖蝕率模型及含塗層渦輪葉片沖蝕工況模擬方法. 中國發明專利, 授權專利號:ZL 201610256953.3, 2018.
[17] 楊麗, 尹冰冰, 周益春, 朱旺. 一種熔融CMAS侵蝕熱障塗層潤濕性能的測試裝置及測試方法. 中國發明專利, 授權專利號:ZL 201510551412.9, 2018.
[18] 楊麗, 李郴飛, 周益春, 朱旺, 蔡燦英. 復阻抗譜的檢測裝置及其方法. 中國發明專利, 授權專利號:ZL 201510641169.X, 2017.
[19] 楊麗, 李曉軍, 周益春, 朱旺, 蔡燦英. 含有多條冷卻通道的渦輪葉片熱障塗層的有限元建模方法. 中國發明專利, 授權專利號:ZL 201410147552.5, 2017.
[20] 楊麗, 李曉軍, 周益春, 朱旺, 蔡燦英. 一種渦輪葉片熱障塗層的有限元模型的格線劃分方法. 中國發明專利, 授權專利號:ZL 201410147512.0, 2017.
[21] 楊麗, 郭進偉, 朱旺, 周益春, 蔡燦英. 一種基於JC算法的熱障塗層界面氧化失效可靠性評估方法. 中國發明專利, 授權專利號:ZL 201310142934.4, 2016.
[22] 周益春, 朱旺, 郭進偉, 楊麗. 定量表征薄膜材料界面結合性能的屈曲測試方法及裝置. 中國發明專利, 授權專利號:ZL 201210528158.7, 2014.