最大項

最大項

n變數最大項是具有n個因子的標準求和項。對於一個n變數的函式,該和項包括n個變數中的每一個變數,若每個變數都以原變數或反變數的形式出現一次,且只出現一次,則該求和項稱為最大項。例如,三變數A、B、C共有8個(即23個)最大項:(A+B+C)、(A+B+C’)、(A+B’+C)、(A+B’+C’)、(A'+B+C)、(A’+B+C')、(A’+B’+C)、(A’+B’+C’)。而(A+C)或(A+B’)這樣的和項由於沒有包含所有的變數(A、B、C三個),則不是最大項。對於n個變數則有2n個最大項。可見,n變數的最大項數目和最小項數目是相等的。對任何一個最大項,有且只有一組變數的取值組合使得它的值為0。

基本介紹

  • 中文名:最大項
  • 外文名:maxterm
  • 所屬學科:數學
  • 所屬領域:邏輯函式
  • 相關概念:邏輯變數、最小項等
基本介紹,定義,舉例分析,符號表示,最大項的性質,用最大項來表達邏輯函式,

基本介紹

定義

邏輯代數的公理具有對偶規律。相應地,邏輯表達式也有“或一與”表達式的形式,例如式(1)就是一個“或一與”表達式,括弧中的項稱為“或”項,也稱為“和”項。
設有n個邏輯變數,它們組成的“或”項中,所有變數或以原變數或以反變數形式出現、且僅出現一次,則這樣的“或”項稱為n變數的最大項。顯然,n個邏輯變數共有2n個最大項。

舉例分析

例如,對於兩個變數A、B,最多可構成4個最大項:
對於3個變數A、B、C,最多可構成8個最大項:

符號表示

最大項可用符號
表示,但下標
的取值規則與最小項
的取值規則恰好相反。確定
值的方法為:先把各變數的排列順序固定下來,接著,對於某一最大項,將原變數記為0,反變數記為1,這就得到一個二進制數。該二進制數對應的十進制數就是
值。例如:對於最大項
照此,上述3個變數形成的8個最大項可表示為:

最大項的性質

現在進一步討論最大項的性質。由最大項的定義和邏輯代數的公理不難證明:
性質1 對於任意一個最大項,在變數的各種取值組合中,只有一組取值能使其為0。例如,A=0、B=1、C=0時,只能使M5為0。
性質2 任意兩個最大項Mi和Mj(i≠j)之和必為1。
性質3 n個變數的所有2n個最大項之積必為0。藉助普通代數的求積符號,此即:

用最大項來表達邏輯函式

下面討論用最大項來表達邏輯函式。可以證明,任何邏輯函式,總可以選擇若干個不同的最大項相乘而得到。當邏輯函式所描述的邏輯功能一定時,這種選擇是唯一的
例如,函式
的最大項表達式為
上式中的最後一行,括弧內的十進制數表示參與求積運算的各個最大項Mi的下標值。
一般地,具有n個變數的邏輯函式,可以用形如:
的方式表達,其中,
是構成函式所需的最大項Mi的下標值。這種最大項之積的標準形式稱為邏輯函式的最大項表達式,也稱為和之積範式
上面推出最大項表達式的過程表明,若已知函式為“或-與”表達式,將邏輯函式轉化成最大項表達式的方法是:在每個非最大項中加上它所缺變數的“原”、“反”之積(如
形式),再運用分配律將其展開,直到全部或項都變為最大項,即得已知函式的最大項表達式。

相關詞條

熱門詞條

聯絡我們