斯坦豪斯-莫澤表示法

斯坦豪斯-莫澤表示法,又稱斯坦豪斯-莫澤記號斯坦豪斯-莫澤多邊形記號多邊形記號,為利用多邊形來表示大數的一種表示法。此表示法由雨果·斯坦豪斯發明,後來李奧·莫澤擴展了該表示法。

基本介紹

  • 中文名:斯坦豪斯-莫澤表示法
  • 外文名:Steinhaus–Moser notation
簡介,大數 (數學),大數記號,高德納箭號表示法,參見,

簡介

斯坦豪斯-莫澤表示法,又稱斯坦豪斯-莫澤記號斯坦豪斯-莫澤多邊形記號多邊形記號,為利用多邊形來表示大數的一種表示法。此表示法由雨果·斯坦豪斯發明,後來李奧·莫澤擴展了該表示法。

大數 (數學)

大數大數字是指數目字相對較大的數字

大數記號

雖然在現實世界中,使用指數來表示大數就已經綽綽有餘,但是在少數的數學問題中會用到的大數,如葛立恆數,仍然是不能用指數來表示的。為了表達這樣的大數,數學家們想出了以下記號:
  • 高德納箭號表示法多層嵌套的指數塔,是一個簡單的符號。
  • 超運算按照加法、乘法和冪的遞迴模式來構造更高級的運算,本質上跟箭號表示法是一樣的。
  • 康威鏈式箭號表示法這種記號是箭號表示法的一種延伸,它能夠表示遠遠超出葛立恆數的數。
  • 斯坦豪斯-莫澤表示法透過多邊形來表示大數。
  • 超階乘是階乘的一個擴展。
  • 阿克曼函式是一個二元函式,增長率非常快,跟高德納箭號表示法是同一個等級。
  • 旋轉箭號表示法它是箭號表示法跟鏈式箭號表示法的延伸,並且所能構造的大數比它們更大。
  • BEAF就算是開頭的線性數陣等級,也遠遠超越了上面的大多數記號。

高德納箭號表示法

高德納箭號表示法是種用來表示很大的整數的方法,由高德納於1976年設計。它的概念來自是重複的乘法,乘法是重複的加法

參見

相關詞條

熱門詞條

聯絡我們