數論講義

數論講義

《數論講義》是2001年高等教育出版社出版的圖書。本書在介紹熟知的經典結果時,注意介紹新的證明方法和近代進展,並儘可能介紹它們的套用。

基本介紹

  • 書名:數論講義
  • 頁數:  180頁
  • 出版社:高等教育出版社
  • 出版時間:2001年1月1日
  • 裝幀:平裝 
  • 開本:32
圖書信息,內容簡介,目錄,

圖書信息

出版社: 高等教育出版社; 第2版 (2001年1月1日)
叢書名: 普通高等教育“九五”國家教委重點教材
正文語種: 簡體中文
ISBN: 9787040088311
條形碼: 9787040088311
尺寸: 20.2 x 13.8 x 0.8 cm
重量: 259 g

內容簡介

《數論講義(上冊)(第2版)》是根據作者多年教學經驗和科研成果寫成的,內容除通常的初等數論教材中所包括的基本內容外,還包括三次、四次互反律,代數數論初步,有限域上某些不定方程的基礎知識,第二版中還增加了素性判別和整數分解等內容,《數論講義(上冊)(第2版)》第二版仍分上、下兩冊出版,上冊前五章可作為初等數論課教學內容,上冊第六章及下冊可作為選修課教學內容,《數論講義(上冊)(第2版)》可供數學專業、計算機專業及信息安全、數位訊號處理、組合數學方面的學生和研究生用作教材或參考書,也可供從事上述這些方面的教學、科研人員參考。

目錄

第二版前言
前言
第一章 整數的惟一分解定理
1 整除性
2 最大公因數與輾轉相除法
3 最低公倍數
4 素數、整數的惟一分解定理
5 厄拉多塞篩法
6 麥什涅數、費馬數
7 完全數
8 一次不定方程
9 抽屜原理
第一章習題
第二章 同餘式
1 同餘的定義和基本性質
2 剩餘類和完全剩餘系
3 縮系
4 一次同餘式
5 模數是素數的同餘式
6 孫子剩餘定理及其套用舉例
7 模數是素數冪的同餘式
8 整數的剩餘表示
9 逐步淘汰原則
10 Wolstenholme定理的推廣
11 覆蓋同餘式組
第二章習題
第三章 數論函式
1 數論函式potpn
2 麥比烏斯函式μ(n)
3 歐拉函式伊φ(n)
4 數論函式的狄利克雷乘積
5 麥比烏斯反演公式
6 積性函式
7 數論函式π(n)
8 盧卡斯序列
9 陷門單向函式與公開密鑰碼
第三章習題
第四章 二次剩餘
1 二次剩餘
2 勒讓德符號
3 高斯引理
4 二次互反律
5 二次剩餘理論套用舉例
6 二次同餘式的解法和解數
7 雅可比符號
8 表素數為平方和
9 表正整數為平方和
第四章習題
第五章 原根
1 整數的次數
2 原根
3 計算次數的方法
4 計算原根的方法
5 原根的一個性質
6 指數
7 一般縮系的構造
8原根的一個套用
9基於離散對數的公鑰密碼體制
10 k次剩餘
11 k次剩餘符號
第五章習題
第六章 素性判別和整數分解
1關於算法及其計算量
2偽素數和素性判別
3一些初等的素性判別方法
4分解整數的費馬方法和Kraitchik方法
5連分數法和二次篩法
6 P-l法
第六章習題
名詞索引
參考文獻

相關詞條

熱門詞條

聯絡我們