技術介紹
在現今的
電子信息技術領域,正發生著一場有長遠影響的數位化革命。由於數位化的多媒體信息尤其是
數字視頻、音頻信號的數據量特別龐大,如果不對其進行有效的壓縮就難以得到實際的套用。因此,數據壓縮技術已成為當今數字通信、廣播、存儲和多媒體娛樂中的一項關鍵的
共性技術。
其作用是:能較快地傳輸各種信號,如傳真、Modem通信等;
在現有的通信幹線並行開通更多的多媒體業務,如各種增值業務;緊縮數據存儲容量,如 CD-ROM、VCD和DVD等;
由此看來,通信時間、傳輸頻寬、存儲空間甚至發射能量,都可能成為數據壓縮的對象。
2.數據為何能被壓縮
首先,數據中間常存在一些多餘成分,既
冗餘度。如在一份
計算機檔案中,某些符號會重複出現、某些符號比其他符號出現得更頻繁、某些字元總是在各
數據塊中可預見的位置上出現等,這些冗餘部分便可在
數據編碼中除去或減少。冗餘度壓縮是一個
可逆過程,因此叫做無失真壓縮,或稱保持型編碼。
其次,數據中間尤其是相鄰的數據之間,常存在著相關性。如圖片中常常有色彩均勻的背影,電視信號的相鄰兩幀之間可能只有少量的變化影物是不同的,聲音信號有時具有一定的規律性和周期性等等。因此,有可能利用某些變換來儘可能地去掉這些相關性。但這種變換有時會帶來不可恢復的損失和誤差,因此叫做不可逆壓縮,或稱有失真編碼、摘壓縮等。
此外,人們在欣賞音像節目時,由於耳、目對信號的時間變化和幅度變化的感受能力都有一定的極限,如人眼對影視節目有
視覺暫留效應,人眼或人耳對低於某一極限的幅度變化已無法感知等,故可將信號中這部分感覺不出的分量壓縮掉或“掩蔽掉”。這種壓縮方法同樣是一種不可逆壓縮。
對於數據壓縮技術而言,最基本的要求就是要儘量降低數位化的在碼事,同時仍保持一定的信號質量。不難想像,
數據壓縮的方法應該是很多的,但本質上不外乎上述完全可逆的
冗餘度壓縮和實際上不可逆的嫡壓縮兩類。冗餘度壓縮常用於磁碟檔案、
數據通信和
氣象衛星雲圖等不允許在壓縮過程中有絲毫損失的場合中,但它的壓縮比通常只有幾倍,遠遠不能滿足數字視聽套用的要求。在實際的數字視聽設備中,差不多都採用壓縮比更高但實際有損的嫡壓縮技術。
只要作為最終用戶的人覺察不出或能夠容忍這些失真,就允許對
數字音像信號進一步壓縮以換取更高的編碼效率。摘壓縮主要有特徵抽取和量化兩種方法,
指紋的
模式識別是前者的典型例子,後者則是一種更通用的摘壓縮技術。
3數字音、視頻的壓縮標準
(2)
調幅廣播(50HZ-7kHZ)語音壓縮,採用ITU的
G.722(64kbit/s)建議,用於優質語音、音樂、
音頻會議和視頻會議等。
(3)
調頻廣播(20HZ-15kHZ)及CD音質(20HZ-20kH)的寬頻
音頻壓縮,主要採用MPEG-1或2雙
杜比AC-3等建議,用於CD、MD、MPC、VCD、DVD、
HDTV和電影配音等。
①ITU
H.261建議,用於
ISDN信道的PC電視電話、桌面視頻會議和音像郵件等通信終端。
②MPEG-1視頻壓縮標準,用於 VCD、MPC、PC/TV一體機、互動電視
ITV和電視點播VOD。
③MPEG-2/ITU
H.262視頻標準,主要用於數字存儲。視頻廣播和通信,如HDTV、CATV、DVD、VOD和
電影點播MOD等。
⑤MPEG-4和 ITU H.VLC/L低
碼率多媒體通信標準仍在發展之中。
在各種數據類型中,最難實現的是數字機頻的實時壓縮,因為視頻信號尤其是
HDTV信號所占據的頻寬甚寬,實時壓縮需要很高的處理速度。現在,視頻解碼以及音頻的編碼、解碼多依賴於專用晶片或
數位訊號處理器(DSP)來完成,並已有許多廠商推出了音視合一的單片MPEG-1、MPEG-2
解碼器。我國在發展數據壓縮技術過程中,則充分利用了軟體人才優勢。
在軟體實現方面,由於PC主機的處理能力正在飛速提高,直接利用主CPU編程實現各種視聽壓縮和解碼算法對於桌面系統及家用多媒體將越來越有吸引力。
1996年上半年,
Intel向全球軟體界發布了它的
微處理器媒體擴展(MMX)技術。這種技術主要是在Pentium或Pentium Pro晶片中增加了8個64位暫存器和57條功能強大的新指令,以提高多媒體和通信應用程式中某些計算密集的循環速度。
MMX採用單指令多數據(
SIMD)技術
並行處理多個
信號採樣值,可使不同的應用程式性能成倍提高。如:視頻壓縮可提高1.5倍,
圖像處理可提高40倍,音頻處理可提高3.7偌,
語音識別可提高1.7倍,三維動畫可提高20倍。
與Pentium完全兼容的P55C晶片是1998年3月正式推出的。以後推出的Pentium、Pentium pro或P7等CPU,均將支持
MMX指令。
在
數據壓縮的硬體實現方面,根本的出路是要有自己的音像壓縮晶片(特別是解壓晶片),不管是
專用積體電路(ASIC)實現,還是藉助於通用DSP來編程。
而這一類晶片,目前還只是“霧裡看花”。
不過我們相信,在不久的將來,這些也會成為現實。
數據壓縮的可行性
數據之所以能被壓縮並能保證數據可用,主要是因為數據往往存在著如下幾種現象。
①數據中間常存在一些多餘成分.即冗餘度。如在一份計算機檔案中.某些符號會重複出現、某些符號比其他符號出現得更頻繁、某些字元總是在各數據塊中可預見的位置上出現等。這些冗餘數據便可在數據編碼中除去或減少。冗餘度壓縮是一個可逆過程,因此叫做無失真壓縮,或稱保持型編碼。
②數據間尤其是相鄰的數據之間,常存在著相關性。如圖片中常常有色彩均勻的背景,電視信號的相鄰兩幀之間可能只有少量的變化景物是不同的,聲音信號有時具有一定的規律性和周期性等等。因此,有可能利用某些變換來儘可能地去掉這些相關性數據。但這種變換有時會帶來不可恢復的損失和誤差.因此叫做不可逆壓縮,或稱有失真編碼、摘壓縮等。
③人們在欣賞音像節目時,由於耳、目對信號的時間變化和幅度變化的感受能力都有一定的極限,如人眼對影視節目有視覺暫留效應.人眼或人耳對低於某一極限的幅度變化已無法感知等。因而可將信號中這部分感覺不出的分量壓縮掉或“掩蔽掉”。這種壓縮同樣是一種不可逆壓縮。
點評
隨著數據量的不斷海量,CPU的不斷強勁,雙核
四核的叫個不停,一種叫做時間換空間的最佳化技術應該會越來越流行。所以,
數據壓縮對於今後的資料庫來說,應該會從核武器變成常規武器。Oracle從9i開始羞羞答答的引入表級壓縮,一直以來都是像中國的核電站一樣,宣傳的用處大,論實際的貢獻就不怎么樣了。
Oracle11g似乎是正兒八經的要推廣數據壓縮技術了,專門推出了一個叫做Advance Compression的組件,全面支持普通表壓縮,
非結構化數據壓縮(SecureFile數據壓縮),Data Pump數據壓縮,以及RMAN備份壓縮,數據壓縮技術從此名正言順的登上歷史舞台。既然是專門做為一個Option推出,
Oracle一定是對該特性相當有信心,所以需要單獨為該特性購買License。
在
Oracle9i中雖然引入了表壓縮,但是有很大的限制。只能對批量裝載操作(比如直接路徑裝載,CTAS等)涉及的數據進行壓縮,普通的
DML操作的數據是無法壓縮的。這應該是對於寫操作的壓縮難題沒有解決,一直遺留到Oracle11g,總算是解決了關係
數據壓縮的寫性能問題。Oracle的表壓縮是針對
Block級別的數據壓縮,主要技術和Oracle9i差不多,還是在Block中引入symbol表,將block中的重複數據在symbol中用一個項表示。Oracle會對block進行批量壓縮,而不是每次在block中寫入數據時都進行壓縮,通過這種方式,可以儘量降低數據壓縮對於DML操作的性能影響。這樣,在block級別應該會引入一個新的參數,用於控制block中未壓縮的數據量達到某個標準以後進行壓縮操作。
SecureFile也是Oracle11g新推出的一項特性,用於存儲
非結構化數據。SecureFile也將支持
數據壓縮操作。這樣對於傳統的LOB欄位也可以進行壓縮,將極大的減少
大型資料庫的存儲空間需求。當然,有得比有失,壓縮和解壓時,對於CPU的要求也將更高。但是,目前CPU的發展速度明顯比IO和存儲空間快速的情況下,壓縮是大有可為的技術。通過在
壓縮率和壓縮效率方面的不斷提升,以後應該為成為各個資料庫的標準配置。
技術簡史
電腦里的
數據壓縮其實類似於美眉們的瘦身運動,不外有兩大功用。第一,可以節省空間。拿瘦身美眉來說,要是八個美眉可以擠進一輛計程車里,那該有多省錢啊!第二,可以減少對
頻寬的占用。例如,我們都想在不到 100Kbps 的 GPRS 網上觀看 DVD 大片,這就好比瘦身美眉們總希望用一尺布裁出七件吊帶衫,前者有待於數據壓縮技術的突破性進展,後者則取決於美眉們的恆心和毅力。
簡單地說,如果沒有數據壓縮技術,我們就沒法用 WinRAR 為 Email 中的附屬檔案瘦身;如果沒有數據壓縮技術,市場上的
數碼錄音筆就只能記錄不到 20 分鐘的語音;如果沒有數據壓縮技術,從 Internet 上下載一部電影也許要花半年的時間……可是這一切究竟是如何實現的呢?數據壓縮技術又是怎樣從無到有發展起來的呢?
機率奇緣
一千多年前的中國學者就知道用“班馬”這樣的縮略語來指代
班固和
司馬遷,這種崇尚簡約的風俗一直延續到了今天的 Internet 時代:當我們在 BBS 上用“ 7456 ”代表“氣死我了”,或是用“ B4 ”代表“ Before ”的時候,我們至少應該知道,這其實就是一種最簡單的
數據壓縮呀。
嚴格意義上的數據壓縮起源於人們對機率的認識。當我們對文字信息進行編碼時,如果為出現機率較高的字母賦予較短的編碼,為出現機率較低的字母賦予較長的編碼,總的編碼長度就能縮短不少。遠在計算機出現之前,著名的 Morse 電碼就已經成功地實踐了這一準則。在 Morse 碼錶中,每個字母都對應於一個唯一的點劃組合,出現機率最高的字母 e 被編碼為一個點“ . ”,而出現機率較低的字母 z 則被編碼為“ --.. ”。顯然,這可以有效縮短最終的電碼長度。
資訊理論之父 C. E. Shannon 第一次用
數學語言闡明了機率與
信息冗餘度的關係。在 1948 年發表的論文“
通信的數學理論( A Mathematical Theory of Communication )”中, Shannon 指出,任何信息都存在冗餘,冗餘大小與信息中每個符號(數字、字母或單詞)的出現機率或者說不確定性有關。 Shannon 借鑑了熱力學的概念,把信息中排除了
冗餘後的平均
信息量稱為“
信息熵”,並給出了計算信息熵的數學表達式。這篇偉大的論文後來被譽為資訊理論的開山之作,信息熵也奠定了所有數據壓縮算法的理論基礎。從本質上講,
數據壓縮的目的就是要消除信息中的冗餘,而信息熵及相關的定理恰恰用數學手段精確地描述了
信息冗餘的程度。利用信息熵公式,人們可以計算出
信息編碼的極限,即在一定的
機率模型下,
無損壓縮的編碼長度不可能小於信息熵公式給出的結果。
有了完備的理論,接下來的事就是要想辦法實現具體的算法,並儘量使算法的輸出接近信息熵的極限了。當然,大多數工程技術人員都知道,要將一種理論從數學公式發展成實用技術,就像僅憑一個 E=mc 2 的公式就要去製造核武器一樣,並不是一件很容易的事。
數學遊戲
設計具體的壓縮算法的過程通常更像是一場數學遊戲。開發者首先要尋找一種能儘量精確地統計或估計信息中符號出現機率的方法,然後還要設計一套用最短的代碼描述每個符號的編碼規則。統計學知識對於前一項工作相當有效,迄今為止,人們已經陸續實現了靜態模型、半靜態模型、自適應模型、 Markov 模型、部分匹配
預測模型等機率統計模型。相對而言,編碼方法的發展歷程更為曲折一些。
1948 年, Shannon 在提出
信息熵理論的同時,也給出了一種簡單的編碼方法—— Shannon 編碼。 1952 年, R. M. Fano 又進一步提出了 Fano 編碼。這些早期的編碼方法揭示了
變長編碼的基本規律,也確實可以取得一定的壓縮效果,但離真正實用的壓縮算法還相去甚遠。
第一個實用的編碼方法是由 D. A. Huffman 在 1952 年的論文“最小
冗餘度代碼的
構造方法( A Method for the Construction of Minimum Redundancy Codes )”中提出的。直到今天,許多《
數據結構》教材在討論
二叉樹時仍要提及這種被後人稱為 Huffman 編碼的方法。 Huffman 編碼在計算機界是如此著名,以至於連編碼的發明過程本身也成了人們津津樂道的話題。據說, 1952 年時,年輕的 Huffman 還是
麻省理工學院的一名學生,他為了向老師證明自己可以不參加某門功課的期末考試,才設計了這個看似簡單,但卻影響深遠的編碼方法。
Huffman 編碼效率高,運算速度快,實現方式靈活,從 20 世紀 60 年代至今,在
數據壓縮領域得到了廣泛的套用。例如,早期 UNIX 系統上一個不太為現代人熟知的壓縮程式 COMPACT 實際就是 Huffman 0 階自適應編碼的具體實現。 20 世紀 80 年代初, Huffman 編碼又出現在
CP/M 和 DOS 系統中,其代表程式叫 SQ 。今天,在許多知名的壓縮工具和壓縮算法(如 WinRAR 、 gzip 和 JPEG )里,都有 Huffman 編碼的身影。不過, Huffman 編碼所得的編碼長度只是對信息熵計算結果的一種近似,還無法真正逼近信息熵的極限。正因為如此,現代壓縮技術通常只將 Huffman 視作最終的編碼手段,而非數據壓縮算法的全部。
科學家們一直沒有放棄向信息熵極限挑戰的理想。 1968 年前後, P. Elias 發展了 Shannon 和 Fano 的編碼方法,構造出從數學角度看來更為完美的 Shannon-Fano-Elias 編碼。沿著這一編碼方法的思路, 1976 年, J. Rissanen 提出了一種可以成功地逼近
信息熵極限的編碼方法——
算術編碼。 1982 年, Rissanen 和 G. G. Langdon 一起改進了算術編碼。之後,人們又將算術編碼與 J. G. Cleary 和 I. H. Witten 於 1984 年提出的部分匹配預測模型( PPM )相結合,開發出了壓縮效果近乎完美的算法。今天,那些名為 PPMC 、 PPMD 或 PPMZ 並號稱壓縮效果天下第一的通用壓縮算法,實際上全都是這一思路的具體實現。
對於
無損壓縮而言, PPM 模型與
算術編碼相結合,已經可以最大程度地逼近
信息熵的極限。看起來,壓縮技術的發展可以到此為止了。不幸的是,事情往往不像想像中的那樣簡單:算術編碼雖然可以獲得最短的編碼長度,但其本身的複雜性也使得算術編碼的任何具體實現在運行時都慢如蝸牛。即使在
摩爾定律大行其道, CPU 速度日新月異的今天,算術編碼程式的運行速度也很難滿足日常套用的需求。沒辦法,如果不是後文將要提到的那兩個猶太人,我們還不知要到什麼時候才能用上 WinZIP 這樣方便實用的壓縮工具呢。
異族傳說
逆向思維永遠是科學和技術領域裡出奇制勝的法寶。就在大多數人絞盡腦汁想改進 Huffman 或
算術編碼,以獲得一種兼顧了運行速度和壓縮效果的“完美”編碼的時候,兩個聰明的猶太人 J. Ziv 和 A. Lempel 獨闢蹊徑,完全脫離 Huffman 及算術編碼的設計思路,創造出了一系列比 Huffman 編碼更有效,比算術編碼更快捷的壓縮算法。我們通常用這兩個猶太人姓氏的縮寫,將這些算法統稱為 LZ 系列算法。
按照時間順序, LZ 系列算法的發展歷程大致是: Ziv 和 Lempel 於 1977 年發表題為“順序
數據壓縮的一個通用算法( A Universal Algorithm for Sequential Data Compression )”的論文,論文中描述的算法被後人稱為 LZ77 算法。 1978 年,二人又發表了該論文的續篇“通過可變比率編碼的獨立序列的壓縮( Compression of Individual Sequences via Variable Rate Coding )”,描述了後來被命名為 LZ78 的壓縮算法。 1984 年, T. A. Welch 發表了名為“高性能數據壓縮技術( A Technique for High Performance Data Compression )”的論文,描述了他在 Sperry 研究中心(該研究中心後來併入了 Unisys 公司)的研究成果,這是 LZ78 算法的一個變種,也就是後來非常有名的 LZW 算法。 1990 年後, T. C. Bell 等人又陸續提出了許多 LZ 系列算法的變體或改進版本。
說實話, LZ 系列算法的思路並不新鮮,其中既沒有高深的理論背景,也沒有複雜的數學公式,它們只是簡單地延續了千百年來人們對字典的追崇和喜好,並用一種極為巧妙的方式將字典技術套用於通用
數據壓縮領域。通俗地說,當你用字典中的頁碼和行號代替文章中每個單詞的時候,你實際上已經掌握了 LZ 系列算法的真諦。這種基於字典模型的思路在表面上雖然和 Shannon 、 Huffman 等人開創的統計學方法大相逕庭,但在效果上一樣可以逼近
信息熵的極限。而且,可以從理論上證明, LZ 系列算法在本質上仍然符合信息熵的基本規律。
LZ 系列算法的優越性很快就在數據壓縮領域裡體現 了 出來,使用 LZ 系列算法的
工具軟體數量呈爆炸式增長。 UNIX 系統上最先出現了使用 LZW 算法的 compress 程式,該程式很快成為了 UNIX 世界的壓縮標準。緊隨其後的是
MS-DOS 環境下的 ARC 程式,以及 PKWare 、 PKARC 等仿製品。 20 世紀 80 年代,著名的壓縮工具 LHarc 和 ARJ 則是 LZ77 算法的傑出代表。
今天, LZ77 、 LZ78 、 LZW 算法以及它們的各種變體幾乎壟斷了整個通用
數據壓縮領域,我們熟悉的 PKZIP 、 WinZIP 、 WinRAR 、 gzip 等壓縮工具以及 ZIP 、 GIF 、 PNG 等檔案格式都是 LZ 系列算法的受益者,甚至連 PGP 這樣的加密檔案格式也選擇了 LZ 系列算法作為其數據壓縮的標準。
沒有誰能否認兩位猶太人對數據壓縮技術的貢獻。我想強調的只是,在工程技術領域,片面追求理論上的完美往往只會事倍功半,如果大家能像 Ziv 和 Lempel 那樣,經常換個角度來思考問題,沒準兒你我就能發明一種新的算法,就能在技術方展史上揚名立萬呢。
音畫時尚
LZ 系列算法基本解決了通用
數據壓縮中兼顧速度與壓縮效果的難題。但是,數據壓縮領域裡還有另一片更為廣闊的天地等待著我們去探索。 Shannon 的資訊理論告訴我們,對信息的
先驗知識越多,我們就可以把信息壓縮得越小。換句話說,如果壓縮算法的設計目標不是任意的數據源,而是基本屬性已知的特種數據,壓縮的效果就會進一步提高。這提醒我們,在發展通用壓縮算法之餘,還必須認真研究針對各種特殊數據的專用壓縮算法。比方說,在今天的數碼生活中,遍布於數位相機、
數碼錄音筆、數碼隨身聽、
數碼攝像機等各種數字設備中的圖像、音頻、視頻信息,就必須經過有效的壓縮才能在硬碟上存儲或是通過 USB 電纜傳輸。實際上,
多媒體信息的壓縮一直是
數據壓縮領域裡的重要課題,其中的每一個分支都有可能主導未來的某個技術潮流,並為數碼產品、通信設備和套用軟體開發商帶來無限的商機。
讓我們先從圖像數據的壓縮講起。通常所說的圖像可以被分為
二值圖像、
灰度圖像、彩色圖像等不同的類型。每一類圖像的壓縮方法也不盡相同。
傳真技術的發明和廣泛使用促進了二值
圖像壓縮算法的飛速發展。 CCITT (
國際電報電話諮詢委員會,是
國際電信聯盟 ITU 下屬的一個機構)針對傳真類套用建立了一系列圖像壓縮標準,專用於壓縮和傳遞二值圖像。這些標準大致包括 20 世紀 70 年代後期的 CCITT Group 1 和 Group 2 , 1980 年的 CCITT Group 3 ,以及 1984 年的 CCITT Group 4 。為了適應不同類型的傳真圖像,這些標準所用的編碼方法包括了一維的 MH 編碼和二維的 MR 編碼,其中使用了
行程編碼( RLE )和 Huffman 編碼等技術。今天,我們在辦公室或家裡收發傳真時,使用的大多是 CCITT Group 3 壓縮標準,一些基於數字網路的傳真設備和存放
二值圖像的 TIFF 檔案則使用了 CCITT Group 4 壓縮標準。 1993 年, CCITT 和 ISO (
國際標準化組織)共同成立的二值圖像聯合專家組( Joint Bi-level Image Experts Group , JBIG )又將二值圖像的壓縮進一步發展為更加通用的 JBIG 標準。
實際上,對於二值圖像和非連續的
灰度、彩色圖像而言,包括 LZ 系列算法在內的許多通用壓縮算法都能獲得很好的壓縮效果。例如,誕生於 1987 年的 GIF
圖像檔案格式使用的是 LZW 壓縮算法, 1995 年出現的 PNG 格式比 GIF 格式更加完善,它選擇了 LZ77 算法的變體 zlib 來壓縮圖像數據。此外,利用前面提到過的 Huffman 編碼、
算術編碼以及 PPM 模型,人們事實上已經構造出了許多行之有效的
圖像壓縮算法。
但是,對於生活中更加常見的,像素值在空間上連續變化的
灰度或彩色圖像(比如數碼照片),通用壓縮算法的優勢就不那么明顯了。幸運的是,科學家們發現,如果在壓縮這一類圖像數據時允許改變一些不太重要的像素值,或者說允許損失一些精度(在壓縮通用數據時,我們絕不會容忍任何精度上的損失,但在壓縮和顯示一幅數碼照片時,如果一片樹林裡某些樹葉的顏色稍微變深了一些,看照片的人通常是察覺不到的),我們就有可能在壓縮效果上獲得突破性的進展。這一思想在
數據壓縮領域具有革命性的地位:通過在用戶的忍耐範圍內損失一些精度,我們可以把圖像(也包括音頻和視頻)壓縮到原大小的十分之一、百分之一甚至千分之一,這遠遠超出了通用壓縮算法的能力極限。也許,這和生活中常說的“
退一步海闊天空”的道理有異曲同工之妙吧。
這種允許精度損失的壓縮也被稱為
有損壓縮。在
圖像壓縮領域,著名的 JPEG 標準是有損壓縮算法中的經典。 JPEG 標準由靜態圖像聯合專家組( Joint Photographic Experts Group , JPEG )於 1986 年開始制定, 1994 年後成為國際標準。 JPEG 以
離散餘弦變換( DCT )為核心算法,通過調整質量係數控制圖像的精度和大小。對於照片等連續變化的
灰度或彩色圖像, JPEG 在保證
圖像質量的前提下,一般可以將圖像壓縮到原大小的十分之一到二十分之一。如果不考慮圖像質量, JPEG 甚至可以將
圖像壓縮到“無限小”。
JPEG 標準的最新進展是 1996 年開始制定, 2001 年正式成為國際標準的 JPEG 2000 。與 JPEG 相比, JPEG 2000 作了大幅改進,其中最重要的是用
離散小波變換( DWT )替代了 JPEG 標準中的離散餘弦變換。在檔案大小相同的情況下, JPEG 2000 壓縮的圖像比 JPEG 質量更高,精度損失更小。作為一個新標準, JPEG 2000 暫時還沒有得到廣泛的套用,不過包括數位相機製造商在內的許多企業都對其套用前景表示樂觀, JPEG 2000 在圖像壓縮領域裡大顯身手的那一天應該不會特別遙遠。
JPEG 標準中通過損失精度來換取壓縮效果的設計思想直接影響了視頻數據的壓縮技術。 CCITT 於 1988 年制定了電視電話和會議電視的
H.261 建議草案。 H.261 的基本思路是使用類似 JPEG 標準的算法壓縮
視頻流中的每一幀圖像,同時採用
運動補償的
幀間預測來消除視頻流在時間維度上的冗餘信息。在此基礎上, 1993 年, ISO 通過了
動態圖像專家組( Moving Picture Experts Group , MPEG )提出的
MPEG-1 標準。 MPEG-1 可以對普通質量的視頻數據進行有效編碼。我們現在看到的大多數 VCD 影碟,就是使用 MPEG-1 標準來壓縮視頻數據的。
為了支持更清晰的視頻圖像,特別是支持
數位電視等高端套用, ISO 於 1994 年提出了新的
MPEG-2 標準(相當於 CCITT 的
H.262 標準)。 MPEG-2 對
圖像質量作了分級處理,可以適應普通電視節目、會議電視、高清晰數位電視等不同質量的視頻套用。在我們的生活中,可以提供高清晰畫面的 DVD 影碟所採用的正是 MPEG-2 標準。
Internet 的發展對視頻壓縮提出了更高的要求。在內容互動、對象編輯、
隨機存取等新需求的刺激下, ISO 於 1999 年通過了
MPEG-4 標準(相當於 CCITT 的
H.263 和 H.263+ 標準)。 MPEG-4 標準擁有更高的壓縮比率,支持並發
數據流的編碼、基於內容的互動操作、增強的時間域隨機存取、容錯、基於內容的尺度可變性等先進特性。 Internet 上新興的 DivX 和 XviD 檔案格式就是採用 MPEG-4 標準來壓縮視頻數據的,它們可以用更小的存儲空間或通信
頻寬提供與 DVD 不相上下的高清晰視頻,這使我們在 Internet 上發布或下載數字電影的夢想成為了現實。
就像視頻壓縮和電視產業的發展密不可分一樣,音頻數據的壓縮技術最早也是由
無線電廣播、語音通信等領域裡的技術人員發展起來的。這其中又以
語音編碼和壓縮技術的研究最為活躍。自從 1939 年 H. Dudley 發明
聲碼器以來,人們陸續發明了
脈衝編碼調製( PCM )、線性預測( LPC )、
矢量量化( VQ )、
自適應變換編碼( ATC )、
子帶編碼( SBC )等
語音分析與處理技術。這些語音技術在採集語音特徵,獲取數位訊號的同時,通常也可以起到降低
信息冗餘度的作用。像
圖像壓縮領域裡的 JPEG 一樣,為獲得更高的編碼效率,大多數
語音編碼技術都允許一定程度的精度損失。而且,為了更好地用
二進制數據存儲或傳送語音信號,這些語音編碼技術在將語音信號轉換為數字信息之後又總會用 Huffman 編碼、
算術編碼等通用壓縮算法進一步減少數據流中的冗餘信息。
對於電腦和數字電器(如
數碼錄音筆、數碼隨身聽)中存儲的普通音頻信息,我們最常使用的壓縮方法主要是 MPEG 系列中的
音頻壓縮標準。例如,
MPEG-1 標準提供了 Layer I 、 Layer II 和 Layer III 共三種可選的音頻壓縮標準,
MPEG-2 又進一步引入了 AAC ( Advanced Audio Coding )音頻壓縮標準,
MPEG-4 標準中的音頻部分則同時支持合成聲音編碼和自然聲音編碼等不同類型的套用。在這許多音頻壓縮標準中,聲名最為顯赫的恐怕要數 MPEG-1 Layer III ,也就是我們常說的 MP3 音頻壓縮標準了。從 MP3 播放器到 MP3 手機,從硬碟上堆積如山的 MP3 檔案到 Internet 上著作權糾紛不斷的 MP3 下載, MP3 早已超出了數據壓縮技術的範疇,而成了一種時尚文化的象徵了。
很顯然,在
多媒體信息日益成為主流信息形態的
數位化時代里,數據壓縮技術特別是專用於圖像、音頻、視頻的數據壓縮技術還有相當大的發展空間——畢竟,人們對信息數量和信息質量的追求是永無止境的。
回到未來
從
信息熵到
算術編碼,從猶太人到 WinRAR ,從 JPEG 到 MP3 ,數據壓縮技術的發展史就像是一個寫滿了“創新”、“挑戰”、“突破”和“變革”的羊皮捲軸。也許,我們在這裡不厭其煩地羅列年代、人物、標準和文獻,其目的只是要告訴大家,前人的成果只不過是後人有望超越的目標而已,誰知道在未來的幾年裡,還會出現幾個 Shannon ,幾個 Huffman 呢?
談到未來,我們還可以補充一些與數據壓縮技術的發展趨勢有關的話題。
1994年, M. Burrows 和 D. J. Wheeler 共同提出了一種全新的通用數據壓縮算法。這種算法的核心思想是對字元串輪轉後得到的字元
矩陣進行排序和變換,類似的變換算法被稱為 Burrows-Wheeler 變換,簡稱 BWT 。與 Ziv 和 Lempel 另闢蹊徑的做法如出一轍, Burrows 和 Wheeler 設計的 BWT 算法與以往所有通用壓縮算法的設計思路都迥然不同。如今, BWT 算法在
開放源碼的壓縮工具 bzip 中獲得了巨大的成功, bzip 對於文本檔案的壓縮效果要遠好於使用 LZ 系列算法的
工具軟體。這至少可以表明,即便在日趨成熟的通用
數據壓縮領域,只要能在思路和技術上不斷創新,我們仍然可以找到新的突破口。
分形壓縮技術是
圖像壓縮領域近幾年來的一個熱點。這一技術起源於 B. Mandelbrot 於 1977 年創建的
分形幾何學。 M. Barnsley 在 20 世紀 80 年代後期為分形壓縮奠定了理論基礎。從 20 世紀 90 年代開始, A. Jacquin 等人陸續提出了許多實驗性的分形壓縮算法。今天,很多人相信,分形壓縮是圖像壓縮領域裡最有潛力的一種
技術體系,但也有很多人對此不屑一顧。無論其前景如何,
分形壓縮技術的研究與發展都提示我們,在經過了幾十年的高速發展之後,也許,我們需要一種新的理論,或是幾種更有效的數學模型,以支撐和推動數據壓縮技術繼續向前躍進。
人工智慧是另一個可能對
數據壓縮的未來產生重大影響的關鍵字。既然 Shannon 認為,信息能否被壓縮以及能在多大程度上被壓縮與信息的不確定性有直接關係,假設
人工智慧技術在某一天成熟起來,假設計算機可以像人一樣根據已知的少量上下文猜測後續的信息,那么,將信息壓縮到原大小的萬分之一乃至十萬分之一,恐怕就不再是天方夜譚了。
回顧歷史之後,人們總喜歡暢想一下未來。但未來終究是未來,如果僅憑你我幾句話就可以理清未來的技術發展趨勢,那技術創新的工作豈不就索然無味了嗎?依我說,未來並不重要,重要的是,趕快到 Internet 上下載幾部大片,然後躺在沙發里,好好享受一下
數據壓縮為我們帶來的無限快樂吧。