作者: [美] G. 波利亞 出版社: 科學出版社 副標題: 數學中的歸納和類比 譯者:李心燦、王日爽、李志堯 出版年: 2001-7 頁數: 311 定價: 26.00元 裝幀: 平裝 叢書: 數學名著譯叢 ISBN: 9787030091109
基本介紹
- 中文名:數學與猜想(第一卷)
- 作者:G. 波利亞
- 出版社: 科學出版社
- 出版年:2001-7
內容簡介
圖書目錄
譯者的話
序言
對讀者的提示
第一章 歸納方法
引言
1.經驗和信念
2.啟發性聯想
3.支持性聯想
4.歸納的態度
第一章的例題和注釋, l~~14.[12.是與非.13.經驗與行為.14.邏輯學家. 數學家. 物理學家和工程師.]
第二章 一般化. 特殊化. 類比
1.一般化. 特殊化. 類比和歸納
2.一般化
3.特殊化
4.類比
5.一般化. 特殊化和類比
6.由類比作出的發現
7.類比和歸納
第二章的例題和注釋, 1~~46, [第一部分, 1~~20, 第二部分,21~~46].[1.正確的推廣.5.一個極端的特殊情形.7.起主導作用的特殊情形.10.有代表性的特殊情形.11.可類比的情形.18.偉大的類比.19.明確的類比.20.幾位數學家的名句摘錄.21.猜想E.44.對猜想的一個疑問和證明的第一步嘗試.45.證明的第二步嘗試.46.類比的危險.]
第三章 立體幾何中的歸納推理
1.多面體
2.支持猜想的第一批事實
3.支持猜想的更多事實
4.一次嚴格的檢驗
5.驗證再驗證
6.一種很不同的情形
7.類比
8.空間的分割
9.修改一下問題的提法
10.一般化. 特殊化. 類比
11.一個類似的問題
12.類似問題的一張表格
13.解決一大批問題有時比解決單獨一個問題更容易
14.一個猜想
15.預言與證明
16.再來一次, 使它更好
17.歸納法引向演繹法, 特例引向一般證明
18.更多的猜想
第三章的例題和注釋, l~~41.[21.歸納過程:思想的適應, 語言的適應.31.笛卡兒對多面體的研究工作.36.立體補角,互補球面多邊形.]
第四章 數論中的歸納方法
1.邊長為整數的直角三角形
2.平方和
3.關於四奇數平方和問題
4.考察一個例子
5, 把觀察結果列成表
6.有什麼規則
7.關於歸納發現未知事物的性質
8.關於歸納證據的性質
第四章的例題和注釋,1~~26.[1.符號表示法.26.歸納法的危險.]
第五章 歸納法雜例
l.函式的展開式
2.近似式
3.極限
4.設法推翻它
5.設法證明它
6.歸納階段的作用
第五章的例題和注釋, 1~~18.[15.解釋觀察到的規律性.16.把觀察到的事實進行分類.18.差別是什麼 ]
第六章 更一般性的陳述
1.歐拉
2.歐拉的研究報告
3.從實踐到抽象的一般觀點
4.歐拉研究報告的概述
第六章的例題和注釋,l~~25.[1.母函式.7.平面幾何的一個組合問題.10.平方和.19.另一個遞推公式.20.整數因子和的另一個奇特規律.24.歐拉怎樣遺漏一個發現.25.歐拉定理關於σn 的一種推廣.]
第七章 數學歸納法
1.歸納階段
2.論證階段
3.研究的飛躍
4.數學歸納法的技巧
第七章的例題和注釋, l~~18.[12.多證可能反而更省事.14.權衡你的定理.15.展望.17.任何n個數都相等嗎 ]
第八章 極大和極小
1.模式
2.例子
3.相切的等高線模式
4.兩個例子
5.局部變動的模式
6.算術平均與幾何平均的定理及其初步推論
第八章的例題和注釋, 1~~63, [ 第一部分, 1~~32, 第二部分,33~~63].[1.平面幾何中的最小和最大距離.2.空間幾何中的最小和最大距離.3.平面上的等高線.4.空間中的等值面.11.穿過尊等高線的原則.22.局部變動原則.23.極值的存在性.24.局部變動模式的一個變形:無限過程.25.局部變動模式的另一個變形:有限過程.26.用圖示比較.33.多邊形和多面體.面積和周長.體積和表面.34.具有正方形底的正稜柱.35.正圓柱.36.一般的正稜柱.37.具有正方形底的正對頂稜錐.38.正對頂錐.39.一般的正對頂稜錐.43.幾何套用於代數.45.代數套用於幾何.51.具有正方形底的正稜錐.52.正圓錐.53.一般的正稜錐.55.開蓋盒子.56.槽.57.片.62.郵政局問題.63.克卜勒問題.]
第九章 物理數學
1.光學解釋
2.力學解釋
3.反覆解釋
4.吉恩·伯努利關於捷線的發現
5.阿基米德關於積分法的發現
第九章的例題和注釋,1~~38.[3.內接於已知三角形中具有最小周長的三角形.9.空間中四點交通中心.10.平面上四點交通中心.11.四點交通網.12.打開與拉直.13.彈子.14.地球物理勘查.23.多面體表面上的最短線.24.曲面上的最短線(測地線).26.摺紙法的一個設計.27.擲骰子.28.洪水.29.不像井那么深.30.一種常用的極端情形.32.變分法.33.從截面平衡到立體平衡.38.阿基米德方法的回顧.]
第十章 等周問題
1.笛卡兒的歸納理由
2.潛在的理由
3.物理原因
4.瑞利的歸納理由
5.導出結論
6.證明結論
7.非常密切的關係
8.等周定理的三種形式
9.套用與問題
第十章的例題和注釋, 1~~43, [第一部分, 1~~15, 第二部分,16~~43].[1.回顧.2.你能用不同的方法推出某些部分的結果嗎 3.比較詳細地重新敘述.7.你能將此方法用於其他某些問題嗎 8.等周定理的更清晰的形式.16.桿和繩.21.兩根桿和兩條繩.25.立體幾何中的泰都問題.27.平面區域的等分錢.34.封閉曲面的等分線.40.具有許多完美性的圖形.41.一種類似的情形.42.正立體.43.歸納理由]
第十一章 更多種類的合情推理
1.猜一猜
2.根據有關情形判定
3.根據一般情形判定
4.提出一個比較簡單的猜想
5.背景
6.無窮盡的過程
7.常用的啟發性假設
第十一章的例題和注釋,1~~23.[16.一般情形.19.沒有主意是最不好的.20.一些常用的啟發性假設.21.樂觀的報酬.23.數值計算與工程師.]
後紀
問題的解答
參考文獻~