本收的特點是把傅立葉分析的方法作為解決物理、工程問題的工具來進行講述的。作者力圖使這本書既適合工程技術人員也對純數學工作者有益。 作者從介紹最基本的數學物理方程問題的背景開始,然後講述傅立葉級數的最基本理論。在處理收斂問題時只涉及逐段光滑函式,然後引入L2理論,此時以承認勒貝格積分論為前提。 本書以傅立葉分析為主線,以解決典型的數學物理方程為目標來展開相關的數學理論,是一本數學物理方程課程的教材。它適應我國綜合大學和工科大學本科高年級及研究生數學、物理及工程專業的學生學習。學習此書的要求是具備微積分、常微分方程和最基本的複變函數基礎。 從書中的內容來看,作者的數學造論是比較深的,因為在結合實際方程講述數學理論時,明白,清楚的。數學物理方程這門課本身就具有很強的綜合性、套用性,理論難度並不大,但涉及知識領域廣,基礎要求寬。國內好的數學物理方程教材並不多。 本書能適應國內教學的需要,而且此書以傅立葉分析為主線的結構和比較清晰嚴謹的邏輯安排是很值得稱道的。當然,從純數學的角度來看,此書的內容的理論深度不大,所以可讀性較強,有廣泛的讀者。
基本介紹
- 書名:數學物理方程:傅立葉分析及其套用
- 出版社:機械工業出版社
- 開本:16
- 品牌:機械工業出版社
- 作者:傅蘭德
- 出版日期:2005年1月1日
- ISBN:7111156706
作者簡介
圖書目錄
序
1 Overture
2 Fourier Series
3 Orthogonal Sets of Functions
4 Some Boundary Value Problems
5 Bessel Functions
6 Orthogonal Polynomials
7 The Fourier Transform
8 The Laplace Transform
9 Generalized Functions
10 Green's Functions
Appendices