《擬遺傳代數和傾斜理論》是依託廈門大學,由林亞南擔任項目負責人的面上項目。
基本介紹
- 中文名:擬遺傳代數和傾斜理論
- 項目類別:面上項目
- 項目負責人:林亞南
- 依託單位:廈門大學
- 負責人職稱:教授
- 批准號:19771070
- 研究期限:1998-01-01 至 2000-12-31
- 申請代碼:A0104
- 支持經費:7.2(萬元)
《擬遺傳代數和傾斜理論》是依託廈門大學,由林亞南擔任項目負責人的面上項目。
《擬遺傳代數和傾斜理論》是依託廈門大學,由林亞南擔任項目負責人的面上項目。項目摘要發現並證明了Hammock存在著子結構和商結構。任意的Hammock可以通過任意投射點或入射點分散成為兩個Hammock之和。利用Hamm...
擬遺傳代數是數學術語。中文名 擬遺傳代數 類型 數學術語 定義介紹 擬遺傳代數(quasi-hereditary algebra)一類特殊代數.擬遺傳代數來源於量子群與李代數的研究.設A是域K上有限維代數,I是A的理想.若Iz=I,I<radAI=。且1是投射A模,則稱1是A的遺傳理想.若存在一個理想的有限鏈。=IoCI,CCIR=A使I,/I,:是A...
在近二十五年的時間裡,這一理論有了很大的發展並逐步趨於完善。主要內容包括Hall代數的基本理論及其方法,並且著重指出了利用這一理論和方法通過代數表示論去實現Kac-Moody李代數及相應的量子包絡代數;擬遺傳代數及其表示理論,以及這一理論與復半單李代數及代數群的表示理論等的聯繫。研究背景 起源 早在二十世紀初,...
然而,研究一般有限維代數的控制維數不僅十分困難而且經常動力不足。近年來,Koenig, Slungard和Xi關於控制維數和Schur-Weyl對偶的工作以及Rouquier的擬遺傳覆蓋理論在研究有理Cherednik代數O範疇中取得的巨大成功無疑為控制維數的研究注入了新的活力。本項目首次嘗試引入一個較大且合適的代數類(包含代數Lie理論中眾多有限...
國家自然科學基金:擬遺傳代數和傾斜理論,1998-01-01--2000-12-01,1.3萬元,主持 研究方向 代數學理論與幾何理論 組合設計與編碼理論 學術成果 期刊 期 刊-> 李思澤,鐘章隊,何睿斯,艾渤.Application of Grey Clustering Evaluations in Coal Railway Transportation[J]。KYBERNETES,2012-05 期 刊-> 黃志鵬,...
Quiver和代數表示理論:遺傳代數和Tilting理論,Auslander-Reiten理論,擬遺傳代數,Koszul代數,O代數。同調代數:同倫範疇,導出範疇與導出等價,Hochschild同調群與上同調群,微分分次代數。Ringel-Hall代數與量子群:Hall多項式,composition代數,量子群,量子廣義Kac-Moody代數。Ringel-Green同構,量子恆等式。Lie理論:...
主要有:關於BOCS理論的研究;關於HAMMOCK與偏序集表示的研究;關於傾斜理論與擬遺傳代數的研究;關於代數表示理論與仿射李代數的聯繫的研究。1995年以來主持2項國家自然科學基金項目、2項福建省自然科學基金項目、1項教育部資助優秀青年教師基金、1項國家留學回國人員基金、1項福建省優秀留學回國人員科研資助項目、共同主持...