數學上,切比雪夫距離(Chebyshev distance)或是L∞度量是向量空間中的一種度量,二個點之間的距離定義為其各坐標數值差的最大值。
基本介紹
- 中文名:摺紙公理
- 提出:切比雪夫距離
- 內容:L∞度量是向量空間中的一種度量
- 表示:max(|x2-x1|,|y2-y1|)
基本概述,公理性質,
基本概述
以(x1,y1)和(x2,y2)二點為例,其切比雪夫距離為max(|x2-x1|,|y2-y1|)。切比雪夫距離得名自俄羅斯數學家切比雪夫。若將西洋棋棋盤放在二維直角坐標系中,格子的邊長定義為1,坐標的x軸及y軸和棋盤方格平行,原點恰落在某一格的中心點,則王從一個位置走到其他位置需要的步數恰為二個位置的切比雪夫距離,因此切比雪夫距離也稱為棋盤距離。例如位置F6和位置E2的切比雪夫距離為4。任何一個不在棋盤邊緣的位置,和周圍八個位置的切比雪夫距離都是1。
公理性質
一維空間中,所有的Lp度量都是一樣的-即為二坐標差的絕對值。
二維空間下,和一點的曼哈頓距離L1為定值r的點也會形成一個正方形,但其邊長為√2r,而且正方形的邊和坐標軸會有π/4(45°)的夾角,因此平面的切比雪夫距離可以視為平面曼哈頓距離旋轉再放大後的結果。
不過上述L1度量及L∞度量之間的關係在更高維度的空間不成立。和一點有相等切比雪夫距離的點會形成一個立方體,各面都和坐標軸垂直,而和一點有相等曼哈頓距離的點會形成一個正八面體。
切比雪夫距離也會用在倉儲物流中。
對一個格線(例如棋盤),和一點的切比雪夫距離為1的點為此點的Moore型鄰居。