基本介紹
- 中文名:挫曲
- 外文名:buckling
- 領域:物理
簡介,柱的挫曲,相關條目,
簡介
挫曲(buckling)也稱為屈曲,是一種不穩定的現象,是指細長件在受到壓縮力時,因細長件彎曲變形而造成的結構失效。
挫曲的特點是在結構件中,邊緣承受壓縮應力的元件突然斷裂,而元件失效時的壓應力小於材料可以承受的終極抗壓應力。挫曲的數學分析一般會設法加入方向也是軸向,但和軸有一段位移(偏心)的壓應力,以產生原來理想施力時不會受現的二次彎矩。
當在一元件(例如桿件)上的壓縮負荷增加,多半最後負荷會大到使元件變形不穩定。若負荷繼續加大,會造成明顯,甚至無法預測的變形,可能讓元件完全無法承受負荷。若變形還不是災難性的,元件仍會繼續承受負載。若挫曲的元件是結構件(例如大樓)中的一部分,會由其他的元件來分擔已挫曲元件原來要承受的負載。
柱的挫曲
- 短的水泥柱是指其未支撐長度的細長比小於10的水泥柱,細長比若超過10,即視為是長柱(有時也稱為是細長柱)。
若柱子的負載有通過其截面的重心上,稱為軸向負載,若負載未通過重心上,稱為偏心負載。受軸向壓縮力的短柱在挫曲之前,就會因為承受過大的壓縮應力而失效,但受軸向壓縮力的長柱會因挫曲而失效,失效時軸向壓縮應力的影響其實不大,可以忽略。中間長度的柱子在其失效時,是因為壓縮應力及挫曲總和的結果而失效。
數學家萊昂哈德·歐拉在1757年提出了細長理想柱在不挫曲的情形下,可以承受的最大軸向壓縮力。理想柱是指直的、均勻的、沒有初始應力的柱子。其最大負載(有時稱為臨界負載)會使柱處於一個不穩定的平衡狀態,任意小的側向力都會使柱因為挫曲而失效。以下的公式不考慮側向力,不過若將側向力考慮進來,其臨界負載的數值幾乎不會變化。
相關條目
- 佩里羅伯遜公式
- 軌道預力
- 勁化
- 伍德法
- 吉村挫曲
- 歐拉臨界負載