態疊加原理

態疊加原理

疊加態原理:疊加原理是量子力學中的一個基本原理, 廣泛套用於量子力學各個方面。態疊加原理實際上是在希爾伯特空間中構造一個形式上很像波函式的東西。

基本介紹

  • 中文名:態疊加原理
  • 外文名:principle of superposition of states
  • 領域:量子力學
  • 對象:微觀粒子粒子
  • 實質:量子態的線性疊加
  • 表現:微觀粒子的波粒二象性
定義,解釋,

定義

粒子的波動性源於波函式的疊加性質,而波函式代表了粒子的狀態,因此由波的疊加性就可以得到態疊加原理(principle of superposition of states):如果
都是體系的可能狀態,那么,它們的線性疊加態緲也是這個體系的一個可能狀態.用數學表達式表示出來,即為
式中,
是複數。從態疊加原理的表述可以看出,這一原理是“波函式可以完全描述一個體系的量子態”和“波的疊加性”這兩個概念的概括。

解釋

量子力學中這樣描述微觀粒子狀態的方式和經典力學中同時用坐標和動量的確定值來描述質點的狀態完全不同。這種差別來源於微觀粒子的波粒二象性。波函式的統計解釋是波粒二象性的一個表現,微觀粒子的波粒二象性還通過量子力學中關於狀態的一個基本原理一態疊加原理表現出來。
在經典物理中,聲波和光波都遵從疊加原理:兩個可能的波動過程
,線性疊加的結果
也是一個可能的波動過程,如圖所示雙縫衍射實驗。光學中的惠更斯原理就是這樣的一個原理:在空間任意一點P的光波強度可以由前一時刻波前上所有各點傳播出來的光波在P點線性疊加起來而得出。利用這個原理可以解釋光的干涉、衍射現象。
雙縫衍射實驗雙縫衍射實驗
在量子力學中,如果
是體系的可能狀態,那么,它們的線性疊加
(
是復常數) (1)
也是這個體系的一個可能狀態,這就是量子力學中的態疊加原理。
態疊加原理是“波的相干疊加性”與“波函式完全描述一個微觀體系的狀態”兩個概念的概括。它還是與測量密切聯繫在一起的一個基本原理,與經典波疊加的物理含義有本質的不同。設體系處在
描寫的狀態中,測量某力學量F得到結果A;又假設當體系處在
態時,測量F得到結果B。則當體系處在
態時,測量F可能得到結果A或結果B。
這裡還要強調指出一點:在式(1)中疊加的是波函式(
均可用一個波函式來表示),即機率幅,而不是機率密度。由式(1)得到
(2)
顯然
。也就是說,體系處在
態時粒子在空間某處出現的機率密度不等於體系處在
態時的機率密度
和體系處於
態時的機率密度
之和。在式(2)中還有干涉項
,粒子的德布羅意波干涉衍射效應正是由這樣的干涉項引起的。
推廣到更一般的情況,態疊加原理可表述為:當
是體系的可能狀態時,它們的線性疊加
(3)
式中,
為復常數,也是體系的一個可能狀態。式(3)中的
可以是某力學量的本徵函式所描寫的本徵態,於是態疊加原理還說明了:量子力學體系的任意一個由
描寫的狀態,都可以表示為某力學量的本徵態的某種線性疊加。
態疊加原理也可以用比較嚴格的數學語言表述為:可以用來描寫一個體系的狀態的所有態函式
,組成一個集合
,它對於以式(1)表示的線性(疊加)運算是封閉的。數學上把這樣的一個集合
叫做一個線性空間(在數學上,再加上一些嚴格規定的這種線性空間叫做希爾伯特(Hilbert)空間)。它是一種函式空間,其中包含的每一個態函式
稱為這個線性空間的一個元素。所以,態疊加原理的含義是:量子力學中描寫一個體系的態函式甲的總體,張開一個線性空間,量子力學就是在這個空間裡展開的。態疊加原理又可表述為:物理體系的狀態由希爾伯特空間中的矢量描寫。
在電子被晶體衍射的實驗中,粒子被晶體衍射以後,可能以各種不同的動量
運動。以一個確定的動量
運動的狀態用波函式
(4)
描寫,這個狀態也被稱為動量本徵態。按照態疊加原理,粒子的任一狀態
可以表示為動量本徵態的某種線 性疊加,即表示為
取各種可能值的
的線性疊加:
(5)
粒子被晶體衍射後所形成的波,是這許多平面波
相干疊加的結果。由於
可以連續變化,式(5)中對
求和應該以對
積分來代替。
在一般情況下,任何一個波函式
都可以看作各種不同動量的平面波的疊加,即可以寫成如下形式:
(6)
式中,
(7)
這裡,已經把式(4)中
的時間函式部分歸入函式
中,而寫為
。此外,已經把式(4)中的歸一化常數A等於
。式(6)中的函式
由下式給出:
(8)
這個結論的證明很簡單:把式(7)代入式(6)中得到
(9)
式(9)和式(8)說明
和互為傅立葉變換式,在一般情況下,它們總是成立的。
在一維的情況下,式(8)和式(9)寫為:

相關詞條

熱門詞條

聯絡我們