彭振贇

彭振贇

湖南邵東人,漢族,1963年出生,博士,教授,1985年,婁底師專畢業,獲數學教育專業專科學歷, 1991年,湖南教育學院畢業,獲數學教育專業本科學歷,1999年,湖南大學畢業,獲計算數學碩士學位,2003年,湖南大學畢業,獲套用數學博士學位,2006年,中南大學博士後出站人員。2000年獲講師職稱,2002年晉升副教授職稱,2005年晉升教授職稱。2010受聘電子科技大學套用數學兼職博士生導師。2010年2月至2011年3月,加拿大New Brunswick大學高級訪問學者。

基本介紹

  • 中文名:彭振贇
  • 國籍:漢族
  • 出生日期:1963年
  • 職業:電子科技大學套用數學兼職博士生導師
個人簡介,科研情況,

個人簡介

電子科技大學套用數學博士生導師
1985年6月至1996年8月在邵東縣從事中學教育工作,多次參加教育部門組織的教學比武並獲得獎勵,多次被評為單位先進個人,1989年獲邵陽市記功1次獎勵。1999年7月至2003年7月在湖南人文科技學院工作;2003年至2007年6月在湖南科技大學工作;2007年7月至今在桂林電子科技大學工作。在高校工作期間,承擔的課程主要有:高等數學、高等代數、離散數學、抽象代數、計算方法、矩陣理論與套用、運算元與矩陣廣義逆等。教學中能很好將理論知識與實際問題相結合,培養了一批優秀的大學畢業生和碩士畢業生。指導全國大學生數學建模獲國家級二等獎3項,省級一等獎2項,省級二等獎1項。
研究方向:科學與工程計算、最最佳化理論、動力系統模型修正

科研情況

國內外學術期刊上發表論文50多篇,其中SCI收錄20多篇。主持完成的國家自然科學基金項目1項;省自然科學基金項目2項;省教育廳項目2項和中國博士後基金項目1項。
1.參與(5),2002-2004年,國家自然科學基金項目:《約束矩陣方程及其最佳逼近(10171031)》。
2.主持,2002-2004年,湖南省教育廳科學研究項目:《約束矩陣方程及其數值解法(02C025)》。
3.主持,2004-2006年,中國博士後科學基金項目:《矩陣逆奇異值問題及其套用(2004035645)》。
4. 主持,2006-2007年,湖南省教育廳委委託研究項目:《約束矩陣方程及其Procrustes問題疊代解法(05C797)》。
5. 參與(2),2005-2007年,國家自然科學基金項目:《線性與非線性約束矩陣方程有效算法(10571047)》。
6. 主持,2007-2012年,桂林電子科技大學引進人才基金項目:《矩陣理論及其套用研究》。
7. 主持,2007-2009年,湖南省自然科學基金項目:《約束矩陣方程有效算法及其套用研究(07JJ3011)》。
8. 主持,2009-2011年, 國家自然科學基金項目:《傳輸理論與隨機服務系統中的矩陣問題及其有效算法研究(10861005)》。
9. 主持,2009-2012年, 廣西區自然科學基金項目:《傳輸理論與隨機模型中的矩陣問題及其有效算法研究(0991238)》。
近期發表論文:
[1] Zhen-yun Peng and Salah M. El-Sayed,On positive definite solution of a nonlinear matrix equation,Numerical Linear Algebra with Applications, 14 (2007), 99-113。SCI
[2] Zhen-yun Peng,Solutions of symmetry constrained least squares problems,Numerical Linear Algebra with Applications, 15:4(2008), 373-389。SCI
[3] Zhen-yun Peng, The rank constrained symmetric solution of the matrix equation, Advances in Matrix Theory and its Applications(Proceedings of the Eighth International Conference on Matrix Theory and Its Applications in China), 2008, 196-199. ISTP
[4] Zhen-yun Peng,A matrix LSQR iterative method to solve matrix equation AXB=C,International Journal of Computer Mathematics,。SCIE
[5] Zhen-yun Peng,New matrix iterative methods for constraints solutions to matrix equation AXB=C,Journal of Computational and Applied Mathematics。SCI
[6] Zhen-yun Peng, Salah M. El-Sayed and Xiang-lin Zhang, Iterative methods for the extremal positive definite solution of the matrix equation X+A*X-A=Q,Journal of Computational and Applied Mathematics,200(2007), 520-527。SCI

相關詞條

熱門詞條

聯絡我們