張洪章,中國科學院大連化學物理研究所(大連化物所)研究員
基本介紹
- 中文名:張洪章
- 國籍:中國
- 民族:漢族
- 出生地:山東省濱州市
- 畢業院校:山東大學、中國科學院大學
- 學位/學歷:工學博士/研究生
- 職業:教師
- 職務:研究員
張洪章,男,工學博士,中國科學院大連化學物理研究所(大連化物所)研究員,博士生導師。2008年本科畢業於山東大學,2013年博士畢業於大連化物所並留所工作至今,2015年加入中科院青年創新促進會(簡稱青促會)。現任潔淨能源國家實驗室(籌)高性能儲能電池關鍵材料研究組(DNL1701)課題組長,大連化物所張大煜青年學者,從事大規模儲能電池關鍵材料與技術研究,包括全釩液流電池、鋰硫電池、鋰氟化炭電池、鋰離子電池、超級電容器和鉛碳電池。近年來發表文章列表:
45. Shahid Mirza, Zihan Song, hongzhang zhang, Arshad Hussain, Huamin Zhang and Xianfeng Li, A simple pre-sodiation strategy to improve performance and energy density of sodium ion batteries with Na4V2(PO4)3 as cathode material, Journal of Materials Chemistry A, DOI: 10.1039/D0TA08186H
44. Y. Luo, et.al, New insights into the formation of silicon-oxygen layer on lithium metal anode via in-situ reaction with tetraethoxysilane, Journal of Energy Chemistry,Volume 56, May 2021, Pages 14-22
43. D. Ma, Zi. Song; All-Weather Li/LiV2(PO4)3 Primary Battery with Improved Shelf-life: Based on the In-situ Modification of Cathode/Electrolyte Interface. July 2020, Journal of Materials Chemistry A, DOI: 10.1039/D0TA05871H
42 Z. Song, H. Li, W. Liu, H. Zhang, J. Yan, Y. Tang, J. Huang, H. Zhang & X. Li. Ultrafast and Stable Li-(De)intercalation in a Large Single Crystal H-Nb2 O5 Anode via Optimizing the Homogeneity of Electron and Ion Transport. Adv. Mater.2020, e2001001.
41 Yu, Y.; Li, T.; Zhang, H.; Luo, Y.; Zhang, H.; Zhang, J.; Yan, J.; Li, X., Principle of progressively and strongly immobilizing polysulfides on polyoxovanadate clusters for excellent Li–S batteries application. Nano Energy 2020, 71.
40 Liu, C.; Li, T.; Zhang, H.; Song, Z.; Qu, C.; Hou, G.; Zhang, H.; Ni, C.; Li, X., DMF stabilized Li3N slurry for manufacturing self-prelithiatable lithium-ion capacitors. Science Bulletin 2020, 65 (6), 434-442.
39 Jia, Z.; Zhang, H.; Yu, Y.; Chen, Y.; Yan, J.; Li, X.; Zhang, H., Trithiocyanuric acid derived g–C3N4 for anchoring the polysulfide in Li–S batteries application. Journal of Energy Chemistry 2020, 43, 71-77.
38 Gou, J.; Wang, Y.; Zhang, H.; Tan, Y.; Yu, Y.; Qu, C.; Yan, J.; Zhang, H.; Li, X., 3D-metal-embroidered electrodes: dreaming for next generation flexible and personalizable energy storage devices. Science Bulletin 2020.
37 Wang, Y.; Yu, Y.; Tan, Y.; Li, T.; Chen, Y.; Wang, S.; Sui, K.; Zhang, H.; Luo, Y.; Li, X., Affinity Laminated Chromatography Membrane Built‐in Electrodes for Suppressing Polysulfide Shuttling in Lithium–Sulfur Batteries. Advanced Energy Materials 2019, 10 (2).
36 Wang, H.; Wang, R.; Song, Z.; Zhang, H.; Zhang, H.; Wang, Y.; Li, X., A novel aqueous Li+ (or Na+)/Br− hybrid-ion battery with super high areal capacity and energy density. Journal of Materials Chemistry A 2019, 7 (21), 13050-13059.
35 Song, Z.; Feng, K.; Zhang, H.; Guo, P.; Jiang, L.; Wang, Q.; Zhang, H.; Li, X., “Giving comes before receiving”: High performance wide temperature range Li-ion battery with Li5V2(PO4)3 as both cathode material and extra Li donor. Nano Energy 2019, 66.
34 Chen, Y. et al. Long Cycle Life Lithium Metal Batteries Enabled with Upright Lithium Anode. Adv. Funct. Mater. 29, doi:10.1002/adfm.201806752 (2019).
33 Feng, K. et al. LiCr( MoO4) 2: a new high specific capacity cathode material for lithium ion batteries. Journal of Materials Chemistry A 7, 567-573, doi:10.1039/c8ta10274k (2019).
32 Yu, Y.; Zhang, H.; Yang, X.; Gou, J.; Tong, X.; Li, X.; Zhang, H., Vertically aligned laminate porous electrode: Amaze the performance with a maze structure. Energy Storage Materials 2019, 19, 88-93.
31 Yu, Y. et al. Vapour induced phase inversion: preparing high performance self- standing sponge- like electrodes with a sulfur loading of over 10 mg cm 2. Journal of Materials Chemistry A 6, 24066-24070, doi:10.1039/c8ta08582j (2018).
30 Yang, X. et al. Multi-functional nanowall arrays with unrestricted Li+ transport channels and an integrated conductive network for high-areal-capacity Li–S batteries. Journal of Materials Chemistry A 6, 22958-22965, doi:10.1039/C8TA08188C (2018).
29 Wang, M. et al. Anchor and activate sulfide with LiTi2(PO4)2.88F0.12 nano spheres for lithium sulfur battery application. Journal of Materials Chemistry A 6, 7639-7648, doi:10.1039/c8ta02027b (2018).
28 Gou, J. et al. Quasi-Stable Electroless Ni-P Deposition: A Pivotal Strategy to Create Flexible Li-S Pouch Batteries with Bench Mark Cycle Stability and Specific Capacity. Adv. Funct. Mater. 28, doi:10.1002/adfm.201707272 (2018).
27 Feng, K., Wang, F., Zhang, H., Li, X. & Zhang, H. Li3Cr(MoO4)(3): a NASICON-type high specific capacity cathode material for lithium ion batteries. Journal of Materials Chemistry A 6, 19107-19112, doi:10.1039/c8ta07782g (2018).
26 Chen, Y. et al. Polysulfide Stabilization: A Pivotal Strategy to Achieve High Energy Density Li-S Batteries with Long Cycle Life. Adv. Funct. Mater. 28, doi:10.1002/adfm.201704987 (2018).
25 Zhang, H., Li, X. & Zhang, H. in Li-S and Li-O2 Batteries with High Specific Energy: Research and Development 1-48 (Springer Singapore, 2017).
24 Yang, X. et al. Shapeable electrodes with extensive materials options and ultra-high loadings for energy storage devices. Nano Energy 39, 418-428, doi:10.1016/j.nanoen.2017.07.028 (2017).
23 Yang, X. et al. The catalytic effect of bismuth for VO2+/VO2+ and V3+/V2+ redox couples in vanadium flow batteries. Journal of Energy Chemistry 26, 1-7, doi:10.1016/j.jechem.2016.09.007 (2017).
22 Wang, H. et al. Rational design and synthesis of LiTi2(PO4)3−xFx anode materials for high-performance aqueous lithium ion batteries. Journal of Materials Chemistry A 5, 593-599, doi:10.1039/c6ta08257b (2017).
21 Qu, C. et al. LiNO 3 -free electrolyte for Li-S battery: A solvent of choice with low K sp of polysulfide and low dendrite of lithium. Nano Energy 39, 262-272, doi:10.1016/j.nanoen.2017.07.002 (2017).
20 Chen, Y. et al. The R&D status and prospects for primary lithium sulfur batteries. Energy Storage Science and Technology 6, 529-533 (2017).
19 Chen, Y. et al. Key materials and technology research progress of lithium-sulfur batteries. Energy Storage Science and Technology 6, 169-189 (2017).
18 Yuan, Z. et al. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries. Energy Environ. Sci. 9, 441-447, doi:10.1039/c5ee02896e (2016).
17 Yang, X. et al. 1-D oriented cross-linking hierarchical porous carbon fibers as a sulfur immobilizer for high performance lithium-sulfur batteries. Journal of Materials Chemistry A 4, 5965-5972, doi:10.1039/C6TA01060A (2016).
16 Yang, X. et al. Phase Inversion: A Universal Method to Create High-Performance Porous Electrodes for Nanoparticle-Based Energy Storage Devices. Adv. Funct. Mater. 26, 8427-8434, doi:10.1002/adfm.201604229 (2016).
15 Wang, M. et al. Rational design of a nested pore structure sulfur host for fast Li/S batteries with a long cycle life. Journal of Materials Chemistry A 4, 1653-1662, doi:10.1039/C5TA08999A (2016).
14 Chen, Y. et al. A novel facile and fast hydrothermal-assisted method to synthesize sulfur/carbon composites for high-performance lithium-sulfur batteries. RSC Advances 6, 81950-81957, doi:10.1039/C6RA19613F (2016).
13 Zhou, W. et al. Iridium incorporated into deoxygenated hierarchical graphene as a high-performance cathode for rechargeable Li–O2batteries. Journal of Materials Chemistry A 3, 14556-14561, doi:10.1039/c5ta03482e (2015).
12 Yang, X. et al. Sulfur embedded in one-dimensional French fries-like hierarchical porous carbon derived from a metal–organic framework for high performance lithium–sulfur batteries. Journal of Materials Chemistry A 3, 15314-15323, doi:10.1039/c5ta03013g (2015).
11 Yan, N. et al. Fabrication of a nano-Li+-channel interlayer for high performance Li-S battery application. RSC Advances 5, 26273 doi:10.1039/c5ra01269d (2015).
10 Wang, Q. et al. Layer-by-Layer Assembled C/S Cathode with Trace Binder for Li-S Battery Application. ACS Appl Mater Interfaces 7, 25002-25006, doi:10.1021/acsami.5b08887 (2015).
9 Wang, M. et al. Steam-Etched Spherical Carbon/Sulfur Composite with HighSulfur Capacity and Long Cycle Life for Li/S Battery Application. ACS APPLIED MATERIALS & INTERFACES 7, 3590-3599 (2015).
8 Qu, C. et al. Room temperature non-aqueous ferrocene/lithium semi-liquid battery with advanced C-rate capability for energy storage application. Int. J. Hydrogen Energy 40, 16429-16433, doi:10.1016/j.ijhydene.2015.09.131 (2015).
7 ke Structured C/S Cathode. Sci Rep 5, 14949, doi:10.1038/srep14949 (2015).
6 Zhang, H. et al. A novel solvent-template method to manufacture nano-scale porous membranes for vanadium flow battery applications. Journal of Materials Chemistry A 2, 9524-9531, doi:10.1039/c4ta00917g (2014).
5 Zhang, H. et al. Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application. Energy & Environmental Science 6, 776-781, doi:10.1039/c3ee24174b (2013).
4 Zhang, H. et al. Crosslinkable sulfonated poly (diallyl-bisphenol ether ether ketone) membranes for vanadium redox flow battery application. J. Power Sources 217, 309-315, doi:10.1016/j.jpowsour.2012.06.030 (2012).
3 Zhang, H., Zhang, H., Li, X., Mai, Z. & Wei, W. Silica modified nanofiltration membranes with improved selectivity for redox flow battery application. Energy & Environmental Science 5, 6299-6303, doi:10.1039/c1ee02571f (2012).
2 Zihan Song, Kai Feng, Hongzhang Zhang, Peng Guo, Lihua Jiang, Qingsong Wang, Huamin Zhang & Xianfeng Li. “Giving comes before receiving”: High performance wide temperature range Li-ion battery with Li5V2(PO4)3 as both cathode material and extra Li donor. Nano Energy, 66 (2019), 104175.
1 Zhang, H., Zhang, H., Li, X., Mai, Z. & Zhang, J. Nanofiltration (NF) membranes: the next generation separators for all vanadium redox flow batteries (VRBs)? Energy & Environmental Science 4, 1676, doi:10.1039/c1ee01117k (2011).