張振中,男,1981年11月生,湖南邵陽人,東華大學理學院數學與統計系教師。
基本介紹
- 中文名:張振中
- 職業:東華大學理學院教師
- 職稱:教授
- 研究方向:馬氏過程及其套用
個人簡介
人物經歷
學習經歷 | 起止年月 | 學校 | 專業 | 學位/學歷 |
---|---|---|---|---|
2004/09-2009/06 | 中南大學 | 機率論與數理統計 | 博士/研究生 | |
2000/09-2004/07 | 湖南理工學院 | 數學與套用數學(師範) | 學士/本科 | |
工作經歷 | 起止年月 | 單位 | 職稱/職務 | |
2009/07-至今 | 東華大學 | 副教授 |
教學成果
課程名稱 | |||
隨機過程、金融數學(利息論)、壽險精算、機率論與數理統計、計量經濟學, 高等數學C等課程; 東華大學 第十三屆學生心目中的好老師。 |
科研成果
研究名稱 | |||
已完成國家自科天元、青年,教育部人文社科規劃類等多項科研項目。現主持國家自科面上基金一項。 |
代表性論文
[1] Z. Zhang, J. Tong,Q. Meng, Y. Liang, Population dynamics driven by stable processes with Markovian switching,Journal of Applied Probability,2021,58:505-522 |
[2] Z Zhang, J. Cao, J. Tong, E. Zhu, Ergodicity of CIR type SDEs driven by stable processes with random switching, Stochastics, 2020, 92(5):761-784 |
[3] L. Yan, W. Pei, Z. Zhang, Exponential stability of SDEs driven by FBM with Markovian switching, Discrete and Continuous Dynamical Systems, Series A, 2019, 39(11):66467-6483 |
[4] Z.Zhang, J.Tong, L.Hu, Ultracontractivity for Brownian motion with Markov switching, Stochastic Analysis & Applications, 2019, 37(3):445-457 |
[5] Z. Zhang, H. Yang, J. Tong, L. Hu, Necessary and sufficient condition of CIR type SDEs with Markov switching, Stochastic and Dynamics, 2019, 18(5), 1950023, 26 pages. |
[6] Z. Zhang, E. Zhang, J. Tong, Necessary and sufficient conditions for ergodicity of CIR model driven by stable processes with Markov switching, Discrete and Continuous Dynamical Systems Series B, 2018, 23: 2433-2455 |
[7] Z. Zhang, X. Jin, J. Tong, Ergodicity and transience of SDEs driven by stable processes with Markov switching, Applicable Analysis, 2018, 97(7):1187-1208 |
[8] J. Tong, X., Jin, Z. Zhang, Exponential ergodicity for SDEs driven by -stable processes with Markov switching in Wasserstein distances, Potential Analysis, 49:503-526, 2018. |
[9] Z. Zhang, X. Zhang, J. Tong, Exponential ergodicity for population dynamics driven by stable processes, Statistics & Probability Letters, 2017, 125: 149-159 |
[10] J.Tong, Z.Zhang, Exponential ergodicity of CIR interest rate model with switching, Stochastic and Dynamics, 201717(5), 1750037, 20pages. |
[11 X. Jin, Z. Zhang, Ergodicity of generalized Ait-Sahalia-type interest rate model, Communications in Statistics- Theory and Methods, 2017, 46(16):8199-8209. |
[12] Z. Zhang, W. Wang, The stationary distribution of Ornstein-Uhlenbeck process with Markov switching, Communications in Statistics- Simulation and Computation, 2017, 46(6):4783-4794. |
[13] Z.Zhang, J. Tong, L. Hu, Long-term behavior of stochastic interest rate models with Markov switching, Insurance: Mathematics and Economics, 2016, 70, 320-326, |
[14] Z. Zhang,J. Tong, J. Bao,The stationary distribution of the facultative population model with a degenerate noise,Statistics & Probability Letters,2013,83(2):655-664. |
[15] Z. Zhang, J.Zou, Y.Liu, The Maximum surplus distribution before Ruin in an Erlang(n) risk process perturbed by diffusion. Acta Mathematica Sinica, 2011, 27(9): 1869-1880 |
[16] Z. Zhang, J.Tong, Censoring technique applied to a MAP/G/1 queue with set-up time and multiple vacations. Taiwan Journal of Mathematics, 2011, 15(2):607-622. |
[17] J.Tong, Z. Zhang, R. Dai, Weighted scale-free networks induced by group preferential mechanism. Physica A: Statistical Mechanics and its Applications, 2011, 390(10):1826-1833. |
[18] J. Tong, Z. Hou, Z.Zhang, Degree correlations in group preferential model. Journal of Physics A: Mathematical and Theoretical, 2009, 42: 275002-275011. |
[19] J.Zou, Z. Zhang, J.,Zhang, Optimal dividend payouts under jump diffusion processes. Stochastic Models, 2009, 25(2): 332-347. |
[20] Z. Hou, J.Tong, Z. Zhang, Convergence of jump-diffusion non-linear differential equation with semi-Markovian switching. Applied Mathematical Modeling, 2009, 33(9):3650-3660. |