《常微分方程的解法1:非剛性問題(第2版)(影印版)》主要論述非剛性常微分方程。第一章介紹自牛頓、萊布尼茲、歐拉和哈密爾頓以來經典理論的歷史發展,極限環及奇異吸引子。第二章用現代觀念闡述龍格庫塔方法和外插法,並討論稠密輸出的連續方法、並行龍格庫塔方法、哈密爾頓系統的特殊方法、二階常微分方程和時滯方程。第三章從多步方法的古典理論開始,論述變步長方法和Nordsieck方法及一般線性方法的理論。 《常微分方程的解法1:非剛性問題(第2版)(影印版)》包括非剛性問題在物理、化學、生物和天文中的套用,電腦程式及數值比較。 第二版中重寫了某些章節,增加了新的內容。
基本介紹
- 書名:常微分方程的解法1:非剛性問題
- 出版社:科學出版社
- 頁數:548頁
- 開本:16
- 定價:78.00
- 作者:海爾 等
- 出版日期:2006年12月27日
- 語種:簡體中文, 英語
- ISBN:7030166809, 9787030166807
- 品牌:科學出版社
基本介紹
內容簡介
作者簡介
圖書目錄
I.1 Terminology
I.2 The Oldest Differential Equations
I.3 Elementary Integration Methods
I.4 Linear Differential Equations
I.5 Equations with Weak Singularities
I.6 Systme of Equations
I.7 A General Existence Theorem
I.8 Existence Theory using Iteration Methods and Taylor Series
I.9 Existence Theory for Systems of Equations
I.10 Differential Inequalities
I.11 Systems of Linear Differential Equations
I.12 Systmes with Constant Coefficients
I.13 Stability
I.14 Derivatives with Respect ot Parameters and Initial Values
I.15 boundary Value and Eigenvalue Problems
I.16 Periodic Solutions, Limit Cycles, Strange Attractors
Chapter II. Runge-Kutta and Extrapolation Methods
II.1 The First Runge-Kutta Methods
II.2 Order Conditions for Runge-Kutta Methods
II.3 Error Estimation and Convergence for RK Methods
II.4 Practical Error Estimation and Step Size Selection
II.5 Explicit Runge-Kutta Methods of Higher Order
II.6 Dense Output, Discontinuities, Derviatives
II.7 Implicit Runge-Kutta Methods
II.8 Asymptotic Expansion of the Golbal Error
II.9 Extrapolation Methods
II.10 Numerical Comparisons
II.11 Parallel Methods
II.12 Composition of B-Series
II.13 Higher Derivative Methods
II.14 Numerical Methods for Second Order Differential Equations
II.15 P-Series for Partitioned Differential Equations
II.16 Symplectic Integration Methods
II.17 Delay Differential Equations
Chapter III. Multistep Methods and General Linear Methods
III.1 Classical Linear Multistep Formulas
III.2 Local Error and Order Conditions
III.3 Stability and the First Dahlquist Barrier
III.4 Convergence of Multistep Methods
III.5 Variable Step Size Multistep Muthods
III.6 Nordisieck Methods
III.7 Implementation and Numerical Comparisons
III.8 General Linear Methods
III.9 Asymptotic Expansion of the Global Error
III.10 Multistep Methods for Second Order Differential Equations
Appendix. Fortran Codes
Bibliography
Symbol Index
Subject Index