基本介紹
- 中文名:對稱差
- 外文名:Symmetric difference
- 符號:一般為 △或⊕
- 類別:數學函式
- 學科:數學
概念,公式,性質,
概念
集合論中的數學術語,即兩個集合的對稱差是只屬於其中一個集合,而不屬於另一個集合的元素組成的集合。 集合論中的這個運算相當於布爾邏輯中的 異或運算。集合 A 和 B 的對稱差通常表示為 AΔB。例如:集合 {1,2,3} 和 {3,4} 的對稱差為 {1,2,4}。所有學生的集合和所有女性的集合的對稱差為所有男性學生和所有女性非學生組成的集合。
公式
也可以表示為兩個集合的並集減去它們的交集:
或者用 異或 運算表示:
綜上可得,採用對稱差運算,任意集合 X 的冪集是阿貝爾群。由於該群中所有元素都是其自身的負元, 這個群實際上是二元域 Z2 上的向量空間。若 X 有限,則以其為元素的單元集合構成這個向量空間的基,那么向量空間的維數等於 X 的元素個數。這種構造方法用於圖論,可定義圖的圈空間。
性質
對稱差相對交集滿足分配律:
對稱差可以在任意布爾代數中定義,這個運算具有用集合中的對稱差相同的性質。