孫成奇

孫成奇,男,博士,中國科學院力學研究所研究員。

基本介紹

  • 中文名:孫成奇
  • 學位/學歷:博士
  • 專業方向:材料和結構的疲勞與破壞
  • 性別:男
個人簡歷,研究領域,代表論著,科研項目,

個人簡歷

2019.12 -中國科學院力學研究所 研究員
2013.12 - 2019.12中國科學院力學研究所 副研究員
2010.06 - 2013.12 中國科學院力學研究所助理研究員
2008.07 - 2010.06高等教育出版社執行編輯
2003.09 - 2008.07北京大學固體力學專業理學博士
1999.09 - 2003.07大連理工大學套用數學系理學學士

研究領域

材料和結構的疲勞與破壞

代表論著

1. Song Qingyuan,Sun Chengqi*, 2020. Mechanism of crack initiation and early growth of high strength steels in very high cycle fatigue regime. Materials Science & Engineering A, 771: 138648.
2. Song Qingyuan, Li Yanqing, Wang Lei, Huang Ruxu, Sun Chengqi*, 2019. Effect of rise and fall time on dwell fatigue behavior of a high strength titanium alloy. Metals, 9: 914.
3. Li Chunming, Hu Zheng, Sun Chengqi*, Song Qingyuan, Zhang Wanhao. Probabilistic control volume method for evaluating the effects of notch size and loading type on fatigue life. Acta Mechanica Solida Sinica. In press.
4. 李亞波, 宋清源, 楊凱, 陳一萍, 孫成奇*, 洪友士, 2019. 試樣疲勞性能尺度效應的機率控制體積方法. 力學學報, 51(5): 1363–1371.
5. Sun Chengqi, Song Qingyuan, Zhou Lingling, Liu Jialong, Wang Yao, Wu Xiaolei, Wei Yujie*, 2019. The formation of discontinuous gradient regimes during crack initiation in high strength steels under very high cycle fatigue. International Journal of Fatigue, 124: 483–492.
6. Sun Chengqi*, Song Qingyuan, Zhou Lingling, Pan Xiangnan, 2019. Characteristic of interior crack initiation and early growth for high cycle and very high cycle fatigue of a martensitic stainless steel.Materials Science & Engineering A, 758: 112–120.
7. Wang Yao, Yuan Lichao, Zhang Shijia, Sun Chengqi, Wang Wenjing, Yang Guangxue, Li Qiang, Wei Yujie*, 2019. The influence of combined gradient structure with residual stress on crack-growth behavior in medium carbon steel. Engineering Fracture Mechanics, 209: 369–381.
8. Sun Chengqi*, Song Qingyuan, 2019. A method for evaluating the effects of specimen geometry and loading condition on fatigue life of metallic materials. MaterialsResearch Express,6:046536.
9. Hu Yuanpei, Sun chengqi, Hong Youshi*, 2018. Crack growth rates and microstructure feature of initiation region for very‐high‐cycle fatigue of a high‐strength steel. Fatigue & Fracture of Engineering Materials & Structures, 41: 1717–1732.
10. Hu Yuanpei, Sun Chengqi, XieJijia, Hong Youshi*, 2018. Effects of loading frequency and loading type on high-cycle and very-high-cycle fatigue of a high-strength steel. Materials, 11: 1456.
11. Sun Chengqi*, Song Qingyuan, 2018. A method for predicting the effects of specimen geometry and loading condition on fatigue strength. Metals, 8: 811.
12. Sun Chengqi*, Song Qingyuan, Hu Yuanpei, Wei Yujie, 2018. Effects of intermittent loading on fatigue life of a high strength steel in very high cycle fatigue regime. International Journal of Fatigue, 117: 9–12.
13. Li Yanqing, Song Qingyuan, FengShichao, Sun Chengqi*, 2018. Effects of loading frequency and specimen geometry on high cycle and very high cycle fatigue life of a high strength titanium alloy. Materials, 11: 1628.
14. Pan Xiangnan, Su Hang, Sun Chengqi, Hong Youshi*, 2018. The behavior of crack initiation and early growth in high-cycle and very-high-cycle fatigue regimes for a titanium alloy. International Journal of Fatigue,115: 67–78.
15. 洪友士*, 孫成奇, 劉小龍, 2018. 合金材料超高周疲勞的機理與模型綜述. 力學進展, 48: 1–65.
16. HongYoushi*, SunChengqi, 2017. The nature and the mechanism of crack initiation and early growth for very-high-cycle fatigue of metallic materials – An overview.Theoretical and Applied Fracture Mechanics, 92: 331–350.
17. ZhangShijia, XieJijia, JiangQingqing, ZhangXiaole, SunChengqi, HongYoushi*, 2017. Fatigue crack growth behavior in gradient microstructure of hardened surface layer for an axle steel.Materials Science & Engineering A,700: 66–74.
18. Su Hang, LiuXiaolong, SunChengqi, HongYoushi*, 2017. Nanograin layer formation at crack initiation region for very-high-cycle fatigue of a Ti–6Al–4V alloy. Fatigue & Fracture of Engineering Materials & Structures, 40: 979–993.
19. 張吟*, 劉小明, 雷現奇, 孫成奇, 方新, 魏宇傑, 2017. 基於分層分壓結構的新型潛水器耐壓殼結構設. 力學學報, 49: 1231–1242.
20. SunChengqi, HongYoushi*, 2016. A promising method for the analysis of notch effect on fatigue strength: Strain energy density approach. Science China Technological Sciences, 59: 1617–1618.
21. Liu Xiaolong, SunChengqi, HongYoushi*, 2016. Faceted crack initiation characteristics for high-cycle and very high-cycle fatigue of a titanium alloy under different stress ratios. International Journal of Fatigue, 92: 434–441.
22. 劉小龍, 孫成奇, 周硯田,洪友士*, 2016. 微結構和應力比對Ti-6Al-4V高周和超高周疲勞行為的影響. 金屬學報, 52: 923–930.
23. Jiang Qingqing, Sun Chengqi, Liu Xiaolong, Hong Youshi*, 2016. Very-high-cycle fatigue behavior of a structural steel with and without induced surface defects. International Journal of Fatigue, 93: 352–362.
24. Sun Chengqi, Zhang Xiaole, Liu Xiaolong, Hong Youshi*, 2016. Effects of specimen size on fatigue life of metallic materials in high-cycle and very-high-cycle fatigue regimes. Fatigue & Fracture of Engineering Materials & Structures, 39: 770–779.
25. Hong Youshi*, Liu Xiaolong, Lei Zhengqiang, Sun Chengqi, 2016. The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high-strength steels. International Journal of Fatigue, 89: 108–118.
26. Liu Xiaolong, Sun Chengqi, Hong Youshi*, 2016. Crack initiation characteristics and fatigue property of a high-strength steel in VHCF regime under different stress ratios. Fracture and Structural Integrity, 35: 88–97.
27. Matsunaga H.*, Sun Chengqi, Hong Youshi*, Murakami Y., 2015. Dominant factors for very-high-cycle fatigue of high-strength steels and a new design method for components. Fatigue & Fracture of Engineering Materials & Structures, 38: 1274–1284.
28. Sun Chengqi, Liu Xiaolong, Hong Youshi*, 2015. A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime. ActaMechanicaSinica, 31: 383–391.
29. Liu Xiaolong, Sun Chengqi, Hong Youshi*, 2015. Effects of stress ratio on high cycle and very-high-cycle fatigue behavior of a Ti-6Al-4V alloy. Materials Science & Engineering A,622: 228–235.
30. Sun Chengqi, Lei Zhengqiang, Hong Youshi*, 2014. Effects of stress ratio on crack growth rate and fatigue strength for high cycle and very-high-cycle fatigue of metallic materials. Mechanics of Materials, 69: 227–236.
31. Hong Youshi*, Lei Zhengqiang, Sun Chengqi, Zhao Aiguo, 2014. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels. International Journal of Fatigue, 58: 144–151.
32. Lei Zhengqiang, XieJijia, Sun Chengqi, Hong Youshi*, 2014. Effect of loading condition on very-high-cycle fatigue behavior and dominant variable analysis. SCIENCE CHINA Physics, Mechanics & Astronomy, 57: 74–82.
33. Sun Chengqi, Lei Zhengqiang, XieJijia, Hong Youshi*, 2013. Effects of inclusion size and stress ratio on fatigue strength for high-strength steels with fish-eye mode failure.International Journal of Fatigue, 48:19–27.
34. Sun Chengqi*, Liu Kaixin, Hong Youshi, 2013. Dynamic shell buckling behavior of multi-walled carbon nanotubes embedded in an elastic medium.SCIENCE CHINA Physics, Mechanics & Astronomy, 56: 483–490.
35. Sun Chengqi, XieJijia, Zhao Aiguo, Lei Zhengqiang, Hong Youshi*, 2012. A cumulative damage model for fatigue life estimation of high-strength steels in high-cycle and very-high-cycle fatigue regimes. Fatigue & Fracture of Engineering Materials & Structures, 35: 638–647.
36. Sun Chengqi*, Liu Kaixin, Hong Youshi, 2012. Dynamic buckling behavior of multi-walled carbon nanotubes subjected to step axial loading. ActaMechanicaSolidaSinica, 25(2): 117–125.
37. Sun Chengqi*, Liu Kaixin, Hong Youshi, 2012. Axisymmetric compressive buckling of multi-walled carbon nanotubes under different boundary conditions.ActaMechanicaSinica, 28(1): 83–90.
38. Zhao Aiguo, XieJijia, Sun Chengqi, Lei Zhengqiang, Hong Youshi*, 2012. Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel. International Journal of Fatigue,38: 46–56.
39. Lei Zhengqiang, Hong Youshi*, XieJijia, Sun Chengqi, Zhao Aiguo, 2012. Effects of inclusion size and location on very-high-cycle fatigue behavior for high strength steels. Materials Science & Engineering A, 558: 234–241.
40. Sun Chengqi, Hong Youshi*, 2012. Correlation of crack growth rate and stress ratio for fatigue damage containing very high cycle fatigue regime. Theoretical & Applied Mechanics Letters, 2: 031004.
41. Lei Zhengqiang, Zhao Aiguo, XieJijia, Sun Chengqi, Hong Youshi*, 2012. Very high cycle fatigue for GCr15 steel with smooth and hole-defect specimens. Theoretical & Applied Mechanics Letters, 2: 031003.
42. 洪友士*, 孫成奇. 高強鋼超高周疲勞裂紋萌生和初始擴展的機理與模型. 第十六屆全國疲勞與斷裂學術會議(大會特邀報告), 中國廈門, 11月2-5日, 2012.
43. Zhao Aiguo, XieJijia, Sun Chengqi, Lei Zhengqiang, Hong Youshi*, 2011. Prediction of threshold value for FGA formation. Materials Science and Engineering A, 528: 6872–6877.
44. Sun Chengqi, Zhao Aiguo, Hong Youshi*, 2011. Correlation of crack initiation parameters with life estimation for very-high-cycle fatigue of high strength steels. Structural Longevity, 2(3): 157–168.
45. 莊表中*, 孫成奇, 吳立香, 2010. 魔術動力學分析之三——兩個或多個鐵環與鐵鏈套結過程. 力學與實踐, 32: 116–117.
46. Sun Chengqi, Liu Kaixin*, 2009. Vibration of multi-walled carbon nanotubes with initial axial force and radial pressure. Journal of Physics D: Applied Physics, 42: 175412.
47. Sun Chengqi, Liu Kaixin*, 2009. Dynamic buckling of double-walled carbon nanotubes under step axial load. ActaMechanicaSolidaSinica, 22(1): 27–36.
48. Sun Chengqi, Liu Kaixin*, 2009. Dynamic column buckling of multi-walled carbon nanotubes under axial impact load. Solid State Communications, 149: 429–433.
49. Sun Chengqi, Liu Kaixin*, 2008. Dynamic torsional buckling of a double-walled carbon nanotube embedded in an elastic medium. European Journal of Mechanics A/Solids, 27: 40–49.
50. Sun Chengqi, Liu Kaixin*, 2008. Combined torsional buckling of multi-walled carbon nanotubes coupling with axial loading and radial pressures. International Journal of Solids and Structures, 45: 2128–2139.
51. Sun Chengqi, Liu Kaixin*, 2008. Torsional buckling of multi-walled carbon nanotubes under combined axial and radial loadings. Journal of Physics D: Applied Physics, 41: 205404.
52. Sun Chengqi, Liu Kaixin*, Lu Guoxing, 2008. Dynamic torsional buckling of multi-walled carbon nanotubes embedded in an elastic medium. ActaMechanicaSinica, 24: 541–547.
53. Sun Chengqi, Liu Kaixin*, 2007. Vibration of multi-walled carbon nanotubes with initial axial loading. Solid State Communications, 143: 202–207.
54. Sun Chengqi, Liu Kaixin*, 2007. Combined torsional buckling of multi-walled carbon nanotubes coupling with radial pressures. Journal of Physics D: Applied Physics, 40: 4027–4033.
55. Sun Chengqi, Liu Kaixin*, Tanimura S., 2007. Investigation of solenoidal condition for solving wave propagation problems by Lamé’s decomposition. Multidiscipline Modeling in Materials and Structures, 3(2): 247–256.

科研項目

1. 國家自然科學基金重大研究計畫培育項目,壓氣機葉片用TC17鈦合金高溫超高周疲勞行為與缺陷敏感性研究(91860112),2019.01-2021.12,在研。
2. 國家重點研發計畫“深海耐壓結構體、材料耐壓特性及評估技術研究”項目子課題,蠕變-疲勞下鈦合金耐壓結構壽命評估技術研究(2017YFC0305501-2),2017.07-2020.12,在研。
3. 國防科工局“XXX設計技術研究與試驗驗證”項目子課題,材料疲勞性能與壽命預測模型,2018.01-2020.12,在研。
4. 中國國家鐵路集團有限公司“動車組S38C/EA4T材質空心車軸修程修制最佳化工作方案”中多個任務,2019.08-2020.12,在研。
5. 國家重點研發計畫“全海深載人潛水器總體設計、集成與海試”項目子課題,全海深耐壓結構的疲勞破壞機制和壽命評估技術研究(2016YFC0300603-06),2016.07-2018.06,已結題。
6. 國家自然科學基金青年科學基金項目,高強鈦合金超高周疲勞的微結構尺度效應實驗研究與理論分析(11202210),2013.01-2015.12,已結題。
7. 中車青島四方技術服務項目,G20Mn5QT軸箱體材料疲勞性能試驗,2018.07-2018.12,已結題。
8. 清華大學技術服務項目,增材製造Ti-6Al-4V超高周疲勞性能試驗研究,2019.09-2020.03,已結題。

相關詞條

熱門詞條

聯絡我們