《多元統計分析(第三版)》是2018年科學出版社出版的圖書,作者是袁志發。
基本介紹
- 書名:多元統計分析(第三版)
- 作者:袁志發
- ISBN:9787030602565
- 類別:機率論/數理統計
- 頁數:358
- 定價:98.00
- 出版社:科學出版社
- 出版時間:2018年12月1日
- 裝幀:平裝
- 開本:B5
- 字數:451000
內容簡介
圖書目錄
第三版前言
第二版前言
第一版前言
第1章 多元常態分配及其抽樣分布 1
1.1 多元指標統計數據及其圖示 1
1.1.1 多元統計數據 1
1.1.2 多元數據的圖示 4
1.2 多元常態分配 6
1.2.1 多元常態分配的定義 7
1.2.2 多元常態分配的性質 8
1.2.3 多元常態分配的條件分布 10
1.3 多元常態分配參數的估計 12
1.3.1 樣本 12
1.3.2 樣本的數字特徵 13
1.3.3 μ與∑的極大似然估計及其性質 15
1.4 多元統計中常用的分布及抽樣分布 17
1.4.1 X2分布與Wishart分布 18
1.4.2 t分布與T2分布 19
1.4.3 中心F分布訂應鑽與Wilks 分布 20
第2章 多元正態總體均值向量和協方差陣的假設檢驗 22
2.1 均值向量μ=μ0的假設檢驗與μ的置信域 22
2.1.1 ∑已知時μ=μ0的檢驗與μ的置信域 23
2.1.2 ∑未知時μ=μ0的檢驗與μ的置信域 25
2.2 均值向量μ1=μ2的假設檢驗與μ1-μ2的置信域 29
2.2.1 ∑已知,檢驗 H0:μ1=μ2與μ1-μ2的置信域 30
2.2.2 ∑未知,檢驗 H0:μ1=μ2與估計μ1-μ2的置信域 31
2.2.3 ∑1≠∑2,檢驗 H0:μ1=μ235
2.3 協方差陣與均值向量的檢驗 37
2.3.1 似然比準則的一般原理 37
2.3.2 協方陣 ∑=∑0的檢驗 38
2.3.3 檢驗假設 H0:判艱疊μ=μ0,∑=∑0 41
2.3.4 多個協方差陣的相等性檢驗 41
2.3.5 多個協方差陣與均值向量的相等性檢驗 43
2.4 獨立性檢驗 46
第3章 多元方差分析 51
3.1 單因素多元方差分析(完全隨機試驗) 51
3.1.1 模型 51
3.1.2 檢驗H0:μ=α2 =…=αα=0 53
頁刪愉3.1.3 多重比較 58
3.2 兩因素的多元方差分析(完全隨機試驗) 59
3.2.1 沒有重複的兩因素多元方差分析 59
3.2.2 等重複的兩因素多元方差分析(完全隨機試驗) 68
3.3 巢式設計試驗的多元方差分析 77
第4章 直線回歸與相陵櫃她臭關 81
4.1 回歸分析的基本概念與統計思想組拳邀剃 81
4.1.1 回歸方程及其模型 81
4.1.2 回歸參數β的估計 83
4.1.3 回歸模型的有效性統計量 84
4.1.4 研究者在回歸分析中所關心的問題 85
4.2 直線回歸與相關分析 85
4.2.1 直線回歸方程及其模型 85
4.2.2 β0;β的LS估計及統計性質 87
4.2.3 回歸模型有效性的方差分析及σ2的騙求戰無偏估計 88
4.2.4 b0和b的假設檢驗與區間估計 91
4.2.5 預測和控制 93
4.2.6 關於線性均方回歸 95
4.3 直線回歸與相關中的幾個問題 96
4.3.1 重複試驗與失擬性檢驗 96
4.3.2 通過原點的回歸直線 101
4.3.3 k條回歸直線的比較 103
4.3.4 相關係數的進一步分析 109
第5章 多元線性回歸與其通徑、決策采檔分析 112
5.1 多元線性回歸與相關分析 112
5.1.1 多元線性均方回歸 112
5.1.2 一個因變數的多元線性回歸分析 114
5.1.3 過原點的多元線性回歸分析 123
5.2 通徑分析及其決策分析 125
5.2.1 標準化多元線性回歸分析 125
5.2.2 通徑分析 127
5.2.3 通徑分析的決策分析 131
5.2.4 綜合選擇指數的通徑分析和決策分析 142
5.2.5 偏相關分析 145
5.3 多項式回歸與趨勢面分析 147
5.3.1 多項式回歸 147
5.3.2 趨勢面分析 150
第6章 多對多的線性回歸與其通徑、決策分析 154
6.1 Yp×1關於Xm×1的線性回歸分析 154
6.1.1 多對多的線性均方回歸 154
6.1.2 β0;β的LS估計及其抽樣分布 155
6.1.3 Lyy的分解和∑e的無偏估計 158
6.1.4 多對多線性回歸方程的有關假設檢驗 159
6.1.5 多對多線性回歸的逐步回歸法 164
6.2 典範相關變數分析與廣義相關係數 166
6.2.1 典範相關變數分析 166
6.2.2 典範變數的性質 168
6.2.3 特徵根λ2t的假設檢驗 169
6.2.4 廣義相關係數 xy 171
6.3 廣義復相關係數(x1x2…xm)(y1y2…yp)及其套用 172
6.3.1 X與Y間的相關信息分析 173
6.3.2 廣義決定係數2、廣義復相關係數(x1x2…xm)(y1y2…yp)=xy的定義和估計 175
6.3.3 廣義相關係數xy的性質 176
6.3.4 廣義復相關係數rxy的假設檢驗 177
6.4 多對多的通徑分析及其決策分析(Ⅰ) 179
6.4.1 標準化多對多線性回歸分析 179
6.4.2 yα=β*Tαx+εα( = 1;2;…;p)的通徑分析及其決策分析 185
6.4.3 多對多通徑分析的通徑圖及中心定理 186
6.5 多對多的通徑分析及其決策分析(Ⅱ) 198
6.5.1 基於R2≈tr(B)的剖分及相應路徑 199
6.5.2 基於R2≈tr(B)剖分的廣義決策係數Ry(j)的定義和特性 206
6.5.3 Ry(j)的假設檢驗 210
第7章 主成分分析與因子分析 221
7.1 主成分分析及其通徑分析與決策分析 221
7.1.1 主成分分析及其性質 221
7.1.2 主成分對X的作用 224
7.1.3 單個主成分的通徑分析與決策分析 237
7.1.4 多對多的主成分通徑分析及其決策分析 241
7.2 因子分析及其通徑、決策分析 243
7.2.1 因子分析模型 243
7.2.2 因子分析模型的傳統分析 245
7.2.3 因子分析的通徑及其決策分析 245
7.2.4 因子分析模型建立的方法 258
7.2.5 因子旋轉 259
7.3 對應分析 261
第8章 判別分析與聚類分析 268
8.1 距離判別分析 268
8.1.1 兩總體距離判別及其判別函式Y(X) 268
8.1.2 多總體距離判別 271
8.2 Fisher線性判別分析及其距離綜合決定率 273
8.2.1 Fisher判別準則下的線性判別函式 273
8.2.2 判別規則 275
8.2.3 統計檢驗 276
8.2.4 X中分量xt對判別作用大小的指標——距離綜合決定率wt 277
8.2.5 Fisher線性判別函式與典範相關、線性回歸的關係 288
8.3 Bayes判別分析 289
8.4 逐步判別分析 295
8.4.1 緊湊變換與逐步線性回歸 296
8.4.2 逐步判別分析簡介 298
8.4.3 逐步判別舉例 302
8.5 聚類分析 305
8.5.1 分類統計量 305
8.5.2 系統聚類法 308
第9章 非線性回歸與Logistic回歸分析 321
9.1 非線性回歸分析 321
9.1.1 可以化為線性模型的情況 321
9.1.2 不可以化為線性模型的情況 321
9.2 Logistic加權回歸(因變數為0-1分布) 332
9.2.1 線性機率模型yi=β0+βxi+εi 332
9.2.2 Logistic分布及轉化為線性回歸的討論 334
9.2.3 Logistic加權回歸模型及分析 335
9.2.4 以x為因變數z為自變數的加權Logistic回歸估計分析 339
參考文獻 342
附表 345