外膜蛋白是一類非常獨特但又非常重要的蛋白質,他們廣泛的存在於原核生物的細胞外膜和真核生物的細胞器外膜中。結構上,它們都具有β-桶狀結構,不同的外膜蛋白的β-桶由不同偶數個β-摺疊片組成,從8個到22個不等;功能上,它們具有為外膜提供通透性,維持外膜結構穩定的作用。摺疊好的外膜蛋白具有極強的穩定性,常溫下,在2%的強離子型表面活性劑SDS中,外膜蛋白仍然具有正常的摺疊結構;而在此溫度下,其他可溶蛋白在0.2%的SDS中就可以迅速失去結構。因此通常將加樣前是否對樣品進行95C加熱去摺疊的SDS-PAGE稱為denatured SDS-PAGE和semi-native SDS-PAGE,並被用來研究外膜蛋白的摺疊狀況。
外膜蛋白的研究經歷了漫長而又曲折的過程。起初人們並沒有意識到外膜蛋白的重要性,雖然有一些關於外膜脂多糖生成障礙與熱致死相關的文獻報導,但是人們還是把更多的注意力集中到膜間質蛋白的生成上,或者模糊的認為膜間質蛋白的生成就是外膜的生成,或者認為膜間質蛋白的錯誤摺疊是引起細胞在脅迫條件下死亡的主要原因。隨著認識的深入,Ried, G. et al.發現與耐熱相關的脂多糖實際上幫助了外膜蛋白的正確生成,Mecsas, J. et al.通過遺傳篩選證明只有外膜蛋白的過表達才會對細胞產生來自胞外的蛋白質生成壓力,激活主要膜間質脅迫信號途徑σE通路。進一步的證據表明,膜間質的主要分子伴侶SurA和Skp都參與了外膜蛋白的正常生成,過表達膜間質分子伴侶可以補救脂多糖合成缺陷的表型,挽救外膜蛋白的異常生成。此後,Rizzitello, A.E. et al.和Sklar, J.G. et al.分別發現還發現膜間質的分子伴侶SurA與DegP和Skp存在平行結構的協作關係,surA和skp,surA和degP的雙敲除都會表現出致死表型並影響外膜蛋白的正常生成。整個認識過程中最重要的發現出現在2003年,Voulhoux, R. et al.發現,一種特殊的外膜蛋白Omp85,能夠捕捉膜間質中的自內膜轉運而來的其他外膜蛋白中間體,並引導它們進入外膜,它的敲除株會使外膜蛋白的生成出現嚴重的障礙並導致細菌的死亡,這一發現使得外膜蛋白生成這一鮮有問津的生物學領域真正引起了學術界的高度重視。這之後,Wu, T. et al.發現Omp85/YaeT/BamA這一因子是通過與YfgL (BamB), NlpB (BamC), YfiO (BamD)和SmpA (BamE)形成巨大的複合物(>230kDa)來發揮作用。最近,Krojer, T. et al.發現膜間質中的另一個與耐熱相關的蛋白DegP/HtrA,能夠和外膜蛋白形成穩定的複合物DegP12/24-OMP,雖然其形成的機制尚不清楚,但是這一發現仍然說明膜間質中的脅迫更多是由於外膜蛋白的異常生成造成的。
最近我們實驗室通過生化和遺傳學的方法證明,主要外膜蛋白都存在穩定的摺疊中間態,並且這些摺疊中間態的存在是革蘭氏陰性菌能在脅迫條件下能正常存活的基礎條件。耐熱相關蛋白DegP/HtrA通過在Skp和SurA下游識別並分選這種摺疊中間狀態來使細菌抵抗環境脅迫並為其提供致病性。DegP的分子伴侶活性和蛋白酶活性在分選外膜蛋白摺疊中間狀態的過程中同時發揮著重要的作用,分子伴侶活性負責捕捉和穩定不同摺疊狀態的外膜蛋白,幫助部分摺疊的外膜蛋白插膜,防止錯誤摺疊的外膜蛋白吸附到外膜上;蛋白酶活性對於清除錯誤摺疊的外膜蛋白至關重要。
Burgess, N.K., Dao, T.P., Stanley, A.M., & Fleming, K.G., Beta-barrel proteins that reside in the Escherichia coliouter membrane in vivo demonstrate varied folding behavior in vitro. J. Biol. Chem.283 (39), 26748-26758 (2008).
Kleinschmidt, J.H., Membrane protein folding on the example of outer membrane protein A of Escherichia coli. Cell Mol. Life Sci.60 (8), 1547-1558 (2003).
Behrens, S., Maier, R., de Cock, H., Schmid, F.X., & Gross, C.A., The SurA periplasmic PPIase lacking its parvulin domains functions in vivoand has chaperone activity. EMBO J.20 (1-2), 285-294 (2001).
Ruiz, N., Kahne, D., & Silhavy, T.J., Advances in understanding bacterial outer-membrane biogenesis. Nat. Rev. Microbiol.4 (1), 57-66 (2006).
Bulieris, P.V., Behrens, S., Holst, O., & Kleinschmidt, J.H., Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide. J. Biol. Chem.278 (11), 9092-9099 (2003).
Rouviere, P.E. & Gross, C.A., SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in.the assembly of outer membrane porins. Genes Dev.10, 3170-3182 (1996).
Voulhoux, R., Bos, M.P., Geurtsen, J., Mols, M., & Tommassen, J., Role of a highly conserved bacterial protein in outer membrane protein assembly. Science299 (5604), 262-265 (2003).
Sklar, J.G., Wu, T., Kahne, D., & Silhavy, T.J., Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev.21 (19), 2473-2484 (2007).
Raina, S. & Georgopoulos, C., The htrM gene, whose product is essential for Escherichia coliviability only at elevated temperatures, is identical to the rfaD gene. Nucleic Acids Res.19 (14), 3811-3819 (1991).
Strauch, K.L., Johnson, K., & Beckwith, J., Characterization of degP, a gene required for proteolysis in the cell-envelope and essential for growth of Escherichia coliat high-temperature. J. Bacteriol.171 (5), 2689-2696 (1989).
Spiess, C., Beil, A., & Ehrmann, M., A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell97 (3), 339-347 (1999).
Ried, G., Hindennach, I., & Henning, U., Role of lipopolysaccharide in assembly of Escherichia coliouter membrane proteins OmpA, OmpC, and OmpF. J. Bacteriol.172 (10), 6048-6053 (1990).
Mecsas, J., Rouviere, P.E., Erickson, J.W., Donohue, T.J., & Gross, C.A., The activity of sigma E, an Escherichia coliheat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev.7 (12B), 2618-2628 (1993).
Chen, R. & Henning, U., A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol.19 (6), 1287-1294 (1996).
Missiakas, D., Betton, J.M., & Raina, S., New components of protein folding in extracytoplasmic compartments of Escherichia coliSurA, FkpA and Skp/OmpH. Mol. Microbiol.21 (4), 871-884 (1996).
Rizzitello, A.E., Harper, J.R., & Silhavy, T.J., Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli. J. Bacteriol.183 (23), 6794-6800 (2001).
Kim, S.et al., Structure and function of an essential component of the outer membrane protein assembly machine. Science317 (5840), 961-964 (2007).
Robert, V.et al., Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol.4 (11), e377 (2006).
Clantin, B.et al., Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. Science317 (5840), 957-961 (2007).
Tommassen, J., Biochemistry. Getting into and through the outer membrane. Science317 (5840), 903-904 (2007).
Wu, T.et al., Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell121 (2), 235-245 (2005).
Krojer, T.et al., Structural basis for the regulated protease and chaperone function of DegP. Nature453, 885-890 (2008).