地下金屬探測儀

地下金屬探測儀是套用先進技術製作的探測儀器,它具有探測度廣、定位準確、分辨力強、操作簡易等特點。主要用於探測和識別隱埋地下的金屬物。

基本介紹

  • 中文名:地下金屬探測儀
  • 種類:探測儀器
  • 特點:探測度廣、定位準確、分辨力強
  • 用途:探測和識別隱埋地下的金屬物
概述,簡介,特點,主要功能,工作原理,高頻振盪器,振盪檢測器,音頻振盪器,互補型多諧振盪器,

概述

簡介

它除了在軍事上套用外,還廣泛用於:安全檢查、考古、探礦,尋找廢舊金屬.又稱“探鐵器”是廢舊回收的好幫手.
地下金屬探測器採用聲音報警和儀表顯示,探測深度跟被探金屬的面積、形狀、重量都有很大的關係,一般來說,面積越大,數量越多,相應的探測深度也越大;反之,面積越小,數量越少,相應的深度就越小。下表所列最大探測深度,是按產品的企業標準用一塊60公分*60公分*0.5公分的鋁板埋入乾燥泥土之中實測的結果。

特點

地下金屬探測儀具有探測度廣、定位準確、分辨力強、操作簡易等特點。地下金屬檢測器主要是用檢測和識別隱埋地下的金屬物和金銀寶物。地下金屬檢測器除了在軍事上套用外,還廣泛用於:安全檢查、考古探寶、探礦。

主要功能

設有地平衡線路,能消除“礦化反應”帶來的影響,大大提高了有效探測的深度及準確率; 具有區別黑色金屬和有色金屬功能;
採用智慧型作業系統 ;
採用高強度ABC材料封裝,重量輕、壽命長;
可通過耳機識別金屬聲音。
金屬埋在地下,透過厚厚的土層去探測,必然受到地質結構的影響。地層中含有各種各樣的礦物質,他們也會使金屬探測產生信號,夠寫礦物的信號會掩蓋掉金屬的信號而造成假象。用過舊時金屬探測器的人都有這種體會,隨著探頭靠近土堆、石塊、磚頭都會發出報警聲,這種現象稱為“礦化反應”。由於這個原因,舊式金屬探測器只能探測到淺土中的金屬,對深埋地下的金屬目標無能為力。犬神地下金屬探測器裝有先進的地平衡系統,能排除“礦化反應”的干擾,大大提高了儀器的探測深度跟效果。

工作原理

金屬探測器是一種專門用來探測金屬的儀器,除了用於探測有金屬外殼或金屬部件的地雷之外,還可以用來探測隱蔽在牆壁內的電線、埋在地下的水管和電纜,甚至能夠地下探寶,發現埋藏在地下的金屬物體。金屬探測器還可以作為開展青少年國防教育和科普活動的用具,當然也不失為是一種有趣的娛樂玩具。
金屬探測器主要利用這幾種原理:高頻振盪器,振盪檢測器,音頻振盪器,互補型多諧振盪器
它們的原理都是:

高頻振盪器

三極體VT1和高頻變壓器T1等組成,是一種變壓器反饋型LC振盪器。T1的初級線圈L1和電容器C1組成LC並聯振盪迴路,其振盪頻率約200kHz,由L1的電感量和C1的電容量決定。
T1的次級線圈L2作為振盪器的反饋線圈,其“C”端接振盪管VT1的基極,“D”端接VD2。由於VD2處於正向導通狀態,對高頻信號來說,“D”端可視為接地。在高頻變壓器T1中,如果“A”和“D”端分別為初、次級線圈繞線方向的首端,則從“C”端輸入到振盪管VT1基極的反饋信號,能夠使電路形成正反饋而產生自激高頻振盪。振盪器反饋電壓的大小與線圈L1、L2的匝數比有關,匝數比過小,由於反饋太弱,不容易起振,過大引起振盪波形失真,還會使金屬探測器靈敏度大為降低。
振盪管VT1的偏置電路由R2和二極體VD2組成,R2為VD2的限流電阻。由於二極體正向閾值電壓恆定(約0.7V),通過次級線圈L2加到VT1的基極,以得到穩定的偏置電壓
顯然,這種穩壓式的偏置電路能夠大大增強VT1高頻振盪器的穩定性。
為了進一步提高金屬探測器的可靠性和靈敏度,高頻振盪器通過穩壓電路供電,其電路由穩壓二極體VD1、限流電阻器R6和去耦電容器C5組成。 振盪管VT1發射極與地之間接有兩個串聯的電位器,具有發射極電流負反饋作用,其電阻值越大,負反饋作用越強,VT1的放大能力也就越低,甚至於使電路停振。RP1為振盪器增益的粗調電位器,RP2為細調電位器。
高頻振盪器探測金屬的原理:調節高頻振盪器的增益電位器,恰好使振盪器處於臨界振盪狀態,也就是說剛好使振盪器起振。
當探測線圈L1靠近金屬物體時,由於電磁感應現像,會在金屬導體中產生渦電流,使振盪迴路中的能量損耗增大,正反饋減弱,處於臨界態的振盪器振盪減弱,甚至無法維持振盪所需的最低能量而停振。
如果能檢測出這種變化,並轉換成聲音信號,根據聲音有無,就可以判定探測線圈下面是否有金屬物體了。

振盪檢測器

振盪檢測器由三極體開關電路和濾波電路組成。開關電路由三極體VT2、二極體VD2等組成,濾波電路由濾波電阻器R3,濾波電容器C2、C3和C4組成。在開關電路中,VT2的基極與次級線圈L2的“C”端相連,當高頻振盪器工作時,經高頻變壓器T1耦合過來的振盪信號,正半周使VT2導通,VT2集電極輸出負脈衝信號,經過π型RC濾波器,在負載電阻器R4上輸出低電平信號。當高頻振盪器停振盪時,“C”端無振盪信號,又由於二極體VD2接在VT2發射極與地之間,VT2基極被反向偏置,VT2處於可靠的截止狀態,VT2集電極為高電平,經過濾波器,在R4上得到高電平信號。由此可見,當高頻振盪器正常工作時,在R4上得到低電平信號,停振時,為高電平,由此完成了對振盪器工作狀態的檢測。

音頻振盪器

音頻振盪器採用互補型多諧振盪器,由三極體VT3、VT4,電阻器R5、R7、R8和電容器C6組成。互補型多諧振盪器採用兩隻不同類型的三極體,其中VT3為NPN型三極體,VT4為PNP型三極體,連線成互補的、能夠強化正反饋的電路。在電路工作時,它們能夠交替地進入導通和截止狀態,產生音頻振盪。R7既是VT3負載電阻器,又是VT3導通時VT4基極限流電阻器。R8是VT4集電極負載電阻器,振盪脈衝信號由VT4集電極輸出。R5和C6等是反饋電阻器和電容器,其數值大小影響振盪頻率的高低。

互補型多諧振盪器

接通電源時,由於VT3基極接有偏置電阻器R1、R3而被正向偏置,假設VT3集電極電流處於上升階段,VT4基極電流隨之上升,導致VT4集電極電流劇增,VT4集電極電位隨之迅速升高,由VT4輸出的電流通過與之相連的R5向C6充電,流經VT3的基極入地,又導致VT3基極電流進一步升高。如此反覆循環,強烈的正反饋使得VT3、VT4迅速進入飽和導通狀態,VT4集電極處於高電平,使多諧振盪器進入第一個暫穩態過程。隨著電源通過飽和導通的VT4經R5向C6充電,當VT3基極電流下降到一定程度時,VT3退出飽和導通狀態,集電極電流開始減小,導致VT4集電極電流減小,VT4集電極電位下降,這一過程又進一步加劇了向C6充電電流迅速減小,VT3基極電位急劇降低而使VT3截止,VT4集電極迅速跌至低電平,多諧振盪器翻轉到第二個暫穩態。多諧振盪器剛進入第二暫穩態時,先前向C6充電的結果,其電容器右端為正,左端為負,現在C6右端對地為低電平,由於電容器C6兩端電壓不能躍變,故VT3基極被C6左端負電位強烈反向偏置,使兩隻三極體在較長時間繼續保持截止狀態。在C6放電時,電流從電容器右端流出,主要流經R5、(R8)、R9、VT5發射結入地,又經過電源、R6、R1、R3流回電容器C6左端。直到C6放電結束,電源繼續通過上述迴路開始對C6反向充電,C6左端為正。當C6兩端的電位上升至0.7V,VT3開始進入導通狀態,經過強烈正反饋,迅速進入飽和導通狀態,使電路再次發生翻轉,重複先前的暫穩態過程,如此周而復始,電路產生自激多諧振盪。從電路工作過程可以看出,向C6充電時,充電電阻器R5電阻值較小,因此充電過程較快,電路處在飽和導通狀態時間很短;而在C6放電時,需要流經許多有關電阻器,放電電阻器總的數值較大,因而放電過程較慢,也就是說電路處於截止時間較長。因此,從VT4集電極輸出波形占空比很大,正脈衝信號脈寬很窄,其振盪頻率約330Hz 。

相關詞條

熱門詞條

聯絡我們