圖形掃描轉換

圖形掃描轉換軟體, 即OCR,將圖像信息還原成文本信息。所謂OCR (Optical Character Recognition光學字元識別)技術,是指電子設備(例如掃瞄器或數位相機)檢查紙上列印的字元,通過檢測暗、亮的模式確定其形狀,然後用字元識別方法將形狀翻譯成計算機文字的過程;即,對文本資料進行掃描,然後對圖像檔案進行分析處理,獲取文字及版面信息的過程。

基本介紹

  • 中文名:圖形掃描轉換
  • 外文名:Optical Character Recognition
  • 簡稱:OCR技術
  • 屬於:光學字元識
簡介,發展歷程,中文版本,衡量標準,

簡介

由於OCR是一門與識別率拔河的技術,因此如何除錯或利用輔助信息提高識別正確率,是OCR最重要的課題,ICR(Intelligent Character Recognition)的名詞也因此而產生。而根據文字資料存在的媒體介質不同,及取得這些資料的方式不同,就衍生出各式各樣、各種不同的套用。

發展歷程

要談OCR的發展,早在60、70年代,世界各國就開始有OCR的研究,而研究的初期,多以文字的識別方法研究為主,且識別的文字僅為0至9的數字。以同樣擁有方塊文字的日本為例,1960年左右開始研究OCR的基本識別理論,初期以數字為對象,直至1965至1970年之間開始有一些簡單的產品,如印刷文字的郵政編碼識別系統,識別郵件上的郵政編碼,幫助郵局作區域分信的作業;也因此至今郵政編碼一直是各國所倡導的地址書寫方式。
OCR可以說是一種不確定的技術研究,正確率就像是一個無窮趨近函式,知道其趨近值,卻只能靠近而無法達到,永遠在與100%作拉鋸戰。因為其牽扯的因素太多了,書寫者的習慣或檔案印刷品質、掃瞄器的掃描品質、識別的方法、學習及測試的樣本……等等,多少都會影響其正確率,也因此, OCR的產品除了需有一個強有力的識別核心外,產品的操作使用方便性、所提供的除錯功能及方法,亦是決定產品好壞的重要因素。
一個OCR識別系統,其目的很簡單,只是要把影像作一個轉換,使影像內的圖形繼續保存、有表格則表格內資料及影像內的文字,一律變成計算機文字,使能達到影像資料的儲存量減少、識別出的文字可再使用及分析,當然也可節省因鍵盤輸入的人力與時間。
從影像到結果輸出,須經過影像輸入、影像前處理、文字特徵抽取、比對識別、最後經人工校正將認錯的文字更正,將結果輸出。
在此逐一介紹:
影像輸入:
欲經過OCR處理的標的物須透過光學儀器,如影像掃瞄器、傳真機或任何攝影器材,將影像轉入計算機。科技的進步,掃瞄器等的輸入裝置已製作的愈來愈精緻,輕薄短小、品質也高,對OCR有相當大的幫助,掃瞄器的解析度使影像更清晰、掃除速度更增進OCR處理的效率。
影像前處理:影像前處理是OCR系統中,須解決問題最多的一個模組,從得到一個不是黑就是白的二值化影像,或灰階、彩色的影像,到獨立出一個個的文字影像的過程,都屬於影像前處理。包含了影像正規化、去除噪聲、影像矯正等的影像處理,及圖文分析、文字行與字分離的檔案前處理。在影像處理方面,在學理及技術方面都已達成熟階段,因此在市面上或網站上有不少可用的程式庫;在檔案前處理方面,則憑各家本領了;影像須先將圖片、表格及文字區域分離出來,甚至可將文章的編排方向、文章的提綱及內容主體區分開,而文字的大小及文字的字型亦可如原始檔案一樣的判斷出來。
文字特徵抽取:單以識別率而言,特徵抽取可說是 OCR的核心,用什麼特徵、怎么抽取,直接影響識別的好壞,也所以在OCR研究初期,特徵抽取的研究報告特別的多。而特徵可說是識別的籌碼,簡易的區分可分為兩類:一為統計的特徵,如文字區域內的黑/白點數比,當文字區分成好幾個區域時,這一個個區域黑/白點數比之聯合,就成了空間的一個數值向量,在比對時,基本的數學理論就足以應付了。而另一類特徵為結構的特徵,如文字影像細線化後,取得字的筆劃端點、交叉點之數量及位置,或以筆劃段為特徵,配合特殊的比對方法,進行比對,市面上的線上手寫輸入軟體的識別方法多以此種結構的方法為主。
對比資料庫:當輸入文字算完特徵後,不管是用統計或結構的特徵,都須有一比對資料庫或特徵資料庫來進行比對,資料庫的內容應包含所有欲識別的字集文字,根據與輸入文字一樣的特徵抽取方法所得的特徵群組。
對比識別:
這是可充分發揮數學運算理論的一個模組,根據不同的特徵特性,選用不同的數學距離函式,較有名的比對方法有,歐式空間的比對方法、鬆弛比對法(Relaxation)、動態程式比對法(Dynamic Programming,DP),以及類神經網路的資料庫建立及比對、HMM(Hidden Markov Model)…等著名的方法,為了使識別的結果更穩定,也有所謂的專家系統(Experts System)被提出,利用各種特徵比對方法的相異互補性,使識別出的結果,其信心度特別的高。
字詞後處理:由於OCR的識別率並無法達到百分之百,或想加強比對的正確性及信心值,一些除錯或甚至幫忙更正的功能,也成為OCR系統中必要的一個模組。字詞後處理就是一例,利用比對後的識別文字與其可能的相似候選字群中,根據前後的識別文字找出最合乎邏輯的詞,做更正的功能。
字詞資料庫:為字詞後處理所建立的詞庫。
人工校正:
OCR最後的關卡,在此之前,使用者可能只是拿支滑鼠,跟著軟體設計的節奏操作或僅是觀看,而在此有可能須特別花使用者的精神及時間,去更正甚至找尋可能是OCR出錯的地方。一個好的OCR軟體,除了有一個穩定的影像處理及識別核心,以降低錯誤率外,人工校正的操作流程及其功能,亦影響OCR的處理效率,因此,文字影像與識別文字的對照,及其螢幕信息擺放的位置、還有每一識別文字的候選字功能、拒認字的功能、及字詞後處理後特意標示出可能有問題的字詞,都是為使用者設計儘量少使用鍵盤的一種功能,當然,不是說系統沒顯示出的文字就一定正確,就像完全由鍵盤輸入的工作人員也會有出錯的時候,這時要重新校正一次或能允許些許的錯,就完全看使用單位的需求了。
結果輸出:
其實輸出是件簡單的事,但卻須看使用者用OCR到底為了什麼?有人只要文本檔案作部份文字的再使用之用,所以只要一般的文字檔案、有人要漂漂亮亮的和輸入檔案一模一樣,所以有原文重現的功能、有人注重表格內的文字,所以要和Excel等軟體結合。無論怎么變化,都只是輸出檔案格式的變化而已。

中文版本

中文OCR,光學符號識別技術是一種漢字文稿的自動輸入方式,它通過光學掃瞄器和計算機的配合,經OCR軟體將圖像數據進行運算分類後,將圖像數據轉化為計算機內碼,可以極大減輕數據錄入工作的強度,提高數據錄入的速度。
文獻資料的數位化錄入,一般分為:
純圖像方式。
目錄文本、正文圖像方式。
全文本方式。
全文索引方式。文本方式和圖像方式的混合體。
我國在OCR技術方面的研究工作起步較晚,在70年代才開始對數字、英文字母及符號的識別進行研究,70年代末開始進行漢字識別的研究,到1986年漢字識別的研究進入一個實質性的階段,不少研究單位相繼推出了中文OCR產品.
我國目前使用的文本型OCR軟體主要有清華文通TH-OCR、北信BI-OCR、中自ICR、瀋陽自動化所SY-OCR、北京曙光公司NI-OCR(已被中自漢王併購)等,匹配的掃瞄器則使用市面上的平板掃瞄器。

衡量標準

衡量一個OCR系統性能好壞的主要指標有:拒識率、誤識率、識別速度、用戶界面的友好性,產品的穩定性,易用性及可行性等方面。
四OCR工作原理
識別過程:
書本級:中文,英文;簡體,繁體;
版式級:豎排,橫排;有無分欄
行切分
字切分
識別:真正的OCR識別過程,圖像信息還原成文本信息
後處理:人工干預,主要集中在前四個階段。
識別精度可以達到99%

相關詞條

熱門詞條

聯絡我們