囿空間(bornologic space)是一類局部凸空間,設E是局部凸空間,如果E中每個均衡凸的囿集都是零元的鄰域,則稱E是囿空間或有界型空間。局部凸空間是囿的,若且唯若在每個有界集上有界的半範數是連續的。設E是囿空間,E1是局部凸空間,則由E到E1的有界線性映射必是連續的。
基本介紹
- 中文名:囿空間
- 外文名:bornologic space
- 所屬學科:數學
- 別名:有界型空間
- 所屬問題:泛函分析(拓撲線性空間)
基本介紹,相關定理,
基本介紹
註:定義就是說,若
,且
有界集與
有界集一致,則
。
![](/img/a/8b3/wZ2NnL3EGMlR2NyAjM3EGO3EzN0EGZmFWOhJmY1EDOmZWOyI2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/5ce/wZ2NnLlNWZ1QmNyEmY5QTNwITNwQDMhdTNlZmNlNzYxkTN1I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/849/wZ2NnL2kzYmFjZhZTMyYmZ5YmMmFmZlhTNiFjMwITMkFTYhJ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
定理1 若
是局部凸空間,則下列等價;
![](/img/2/6b6/wZ2NnLkBzN5YmZzgjN1Q2N1UTYhZDMjZ2Y1QTOlFmN5EmM2Y2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
(1) X是囿空間;
(3) 任何在
有界集上取值有界的半范是連續的。
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
證明:① 若X是囿空間,且V是吸收任意
有界集的凸集,若V不是0點
鄰域,則在0點
鄰域子基中補上
得到集
,以
為0點鄰域子基得到新的局部凸拓撲
,顯然
嚴格強於
,且
與
有同樣的有界集,這與囿空間定義矛盾,故(1)
(2)。
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/1e4/wZ2NnLiZWMllTM4IWY3MjM5kDM4ATNiVmM1ATNmR2Y4EzN0Q2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/592/wZ2NnLjRGO3MDZmVjN4UGMwATOyQTOmNzYmJGMmZzM0MTNjJ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/592/wZ2NnLjRGO3MDZmVjN4UGMwATOyQTOmNzYmJGMmZzM0MTNjJ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/5ce/wZ2NnLlNWZ1QmNyEmY5QTNwITNwQDMhdTNlZmNlNzYxkTN1I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/5ce/wZ2NnLlNWZ1QmNyEmY5QTNwITNwQDMhdTNlZmNlNzYxkTN1I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/5ce/wZ2NnLlNWZ1QmNyEmY5QTNwITNwQDMhdTNlZmNlNzYxkTN1I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/033/wZ2NnL5QGO2UDNmhDZ2YmN3YTZwYmN5kTMjlDO1QWO3ATY3czLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
② 若X不是囿空間,則在X中可引入局部凸拓撲
,使
嚴格強於
,且
與
有同樣的有界集,從而必存在0點
鄰域,它不是0點
鄰域,故(2)
(1)。
![](/img/3/5ce/wZ2NnLlNWZ1QmNyEmY5QTNwITNwQDMhdTNlZmNlNzYxkTN1I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/5ce/wZ2NnLlNWZ1QmNyEmY5QTNwITNwQDMhdTNlZmNlNzYxkTN1I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/5ce/wZ2NnLlNWZ1QmNyEmY5QTNwITNwQDMhdTNlZmNlNzYxkTN1I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/5ce/wZ2NnLlNWZ1QmNyEmY5QTNwITNwQDMhdTNlZmNlNzYxkTN1I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/033/wZ2NnL5QGO2UDNmhDZ2YmN3YTZwYmN5kTMjlDO1QWO3ATY3czLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
③ 若X中吸收任意
有界集的凸集是0點
鄰域,又A是
有界的。p是X的半范,且當
時有
,則
。從而
,故
吸收任意有界集,因此
,故p是連續的,所以(2)
(3)。
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/2/79a/wZ2NnLkRjYmdTOwQ2NmFWZkRTN1YWYwczNmRjM0UTNxUDO1EzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/9/914/wZ2NnL5cDOyQWZzUGNxEWY2ETMyUWO2ITO2MDMyUmZykjN0gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/32f/wZ2NnLxUWOxMGN4MzYiRWMkdDM3kjN5MGOmVzNmRWY3UjN5UzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/b6f/wZ2NnLkJjM0YDM2EGOxkTYwYDO2YGM3EDNiRGMmZWNxM2NiR2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/4/cd8/wZ2NnL2QDO1YjYwADOwYjMhFjZhlzM5UjZ2ETN4MTNlZDMhBzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/4b8/wZ2NnLjBzM1cTOxEDZ5cTM4gTY2ADZyU2NhFDZhZDNxEzNhJ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/033/wZ2NnL5QGO2UDNmhDZ2YmN3YTZwYmN5kTMjlDO1QWO3ATY3czLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
④ 若X不是囿空間,則存在局部凸拓撲
,使
與
有同樣的有界集,且存在一個凸的均衡吸收集V,它是
的0點鄰域而不是
的0點鄰域,故
是在每個
有界集上取值有界的半范,但
不是公連續的.故(3)專(1).口
![](/img/a/8b3/wZ2NnL3EGMlR2NyAjM3EGO3EzN0EGZmFWOhJmY1EDOmZWOyI2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/5ce/wZ2NnLlNWZ1QmNyEmY5QTNwITNwQDMhdTNlZmNlNzYxkTN1I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/5ce/wZ2NnLlNWZ1QmNyEmY5QTNwITNwQDMhdTNlZmNlNzYxkTN1I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/369/wZ2NnL1QWMygzYzMDZhFmM2Y2YxUGN1ImMwQjY5U2N4gzNxIzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/369/wZ2NnL1QWMygzYzMDZhFmM2Y2YxUGN1ImMwQjY5U2N4gzNxIzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
註:任給局部凸空間
,我們在X上可以引入一個局部凸拓撲,稱為
,它是以吸收任何
有界集的一切凸集為0點局部基。容易看到,
是囿空間,
有界集與
有界集是一致的,且
。
![](/img/2/6b6/wZ2NnLkBzN5YmZzgjN1Q2N1UTYhZDMjZ2Y1QTOlFmN5EmM2Y2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/5a2/wZ2NnLzEDM5YTOyQTOyYmMxITN2QmY0QzY1MmN1YGNjhTMmV2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/9/b85/wZ2NnLklzMjdjNwMGZyIjZjJGM2MTNjFTMwcjN2QDNhJ2MwYzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/5a2/wZ2NnLzEDM5YTOyQTOyYmMxITN2QmY0QzY1MmN1YGNjhTMmV2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/574/wZ2NnLmRTYmN2YiR2Y0M2MiNmY2QTY4MTZ5kTO0YWO0ImMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/4/c1a/wZ2NnLyIGMiZWNykzYwMGMzATMwETYwUTM3UWY0E2NiFTM5QzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
相關定理
定理2 任何賦可列半范的局部凸空間是囿空間,特別地,賦范空間是囿空間。
證明:不妨設
![](/img/4/e38/wZ2NnLhFjY4IDZwImZxEmN0ADMwcDO3EjYlJjNjFWZmJzNwYzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/369/wZ2NnL1QWMygzYzMDZhFmM2Y2YxUGN1ImMwQjY5U2N4gzNxIzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
對X中任何有界集E,由於V吸收E,故有
![](/img/8/a20/wZ2NnL4QWO2EDMlhzY1gTYzQWOykjYlRmMjZTOxImNldTO5QzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
但由於V不是0點鄰域,故對任何正整數n及
,有
⊄
,,從而存在
,所以,
,但
,令
,當
時,由(1),
![](/img/2/a3a/wZ2NnLhNjY3ImZ5MDZzIWNkNjNwYTOyUWNhVGM3AzMzQGZ1Y2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/99b/wZ2NnLzUDZjZmYjZDO5QWYzADNxMjN2cTOkZWO4MGO5EDO2Q2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/4fb/wZ2NnLhBDZ4gjY3YTOyM2N2YTOygTOlRGOjBjY0YWY0QTOhdzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/bd3/wZ2NnLxI2NmVDZzcjYlVGNxQWOkZDNzETY5UGNwUWYwIDOzQzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/2e1/wZ2NnLwY2M3UTO3cTY2ATYhlzYlBDZkVjMzUGNhNzYkNGMiF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/fac/wZ2NnLkFjMzEDO0MGNxkDNmZzYlJGZmNTNhNjZ1MjNzYWZ2gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/521/wZ2NnLyIWYkhzN1QTZhlzNidDZ5UWZ3UTZ1UjY4MWM1gTN5YzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/4a0/wZ2NnL4EWZlNGZxcDMlNDZ1kzN1MmNwEmY3QzYhRmNihTMyQzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/65d/wZ2NnL5I2MidTOhJjMkVmMwcjY4YTMxITO2AzN0EGM0Y2YmNzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/f/6c0/wZ2NnLhVzNkRTN2cjMzUzNmNTNlVmZykTNiNmYkZ2NmJmMhF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/22a/wZ2NnLldzM1QDMjJ2MiZmY0kjNmBTOyQzMxUTO4kTMhV2MjVzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/bbb/wZ2NnLkVDM5MWYxIGOwY2YyY2NlZzYmFmMkdjN5gzN4QDZlhzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
定理3 設
是局部凸空間,則X是囿空間若且唯若從X到任意局部凸空間Y的線性有界運算元是連續的。
![](/img/2/6b6/wZ2NnLkBzN5YmZzgjN1Q2N1UTYhZDMjZ2Y1QTOlFmN5EmM2Y2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
證明:設X是囿空間,Y是局部凸空間,
是線性有界運算元(有界指將有界集映成有界集)。設W是Y的0點凸鄰域,則
是X中凸集,且吸收X中任意有界集(事實上,設E是X中有界集,則
是Y中有界集,故存在
,使
,故
),由於X是囿空間,故V是0點領域,從而T是連續的。
![](/img/7/c84/wZ2NnLhJjN2UDNkhDM1gzYzQTOhZmZyIjMhRDM4MTZ2IjNyU2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/f94/wZ2NnLyITZ4UDM1UWNiNTMxYWOxEWOxgjM5ITOzQDOiFmZyQ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/467/wZ2NnL1gzYmNTZ2YjZlRWM4UjYxMTZzUzMjBTOjZWYzMTZ2UzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/2/a3a/wZ2NnLhNjY3ImZ5MDZzIWNkNjNwYTOyUWNhVGM3AzMzQGZ1Y2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/2/aa4/wZ2NnL4EmM1kjZ3UmNmZGNiZWOiZGO4QTZhR2N4EWMiRDM0I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/587/wZ2NnL2UzN5YzYzUTM1ETN0ITM4MGNkZWNkZzNxMmY2Y2Y0I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
推論1若X是囿空間,則X上的每個有界線性泛函必是連續的。
推論2 若X是Banach空間,Y是局部凸空間,則任何有界線性運算元
必是連續的。
![](/img/7/c84/wZ2NnLhJjN2UDNkhDM1gzYzQTOhZmZyIjMhRDM4MTZ2IjNyU2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)