典型域

典型域

典型域(classical domain)是多複變函數論的基本概念。Cn中不可分解對稱有界域在全純等價下分類的標準域稱為典型域,它們有四大類和兩個特殊的域,分別在16維及27維復歐氏空間中,這兩個域也稱為例外典型域。

基本介紹

  • 中文名:典型域
  • 外文名:classical domain
  • 所屬學科:數學
  • 所屬問題:多複變函數論
  • 相關概念:不可分解、全純、有界域等
第一類典型域,第二類典型域,第三類典型域,第四類典型域,相關介紹,

第一類典型域

第一種是m行n列的矩陣雙曲空間,它是由m行n 列的復元素矩陣Z並且適合於條件
的所組成,此處
表示m行列的單位方陣,
表示由Z行列互換並取共軛複數所得出的矩陣,因此它是n 行m列的。如果H是一個Hermite 方陣,則以
表示H是定正的。

第二類典型域

第二種是n 行列的對稱方陣的雙曲空間,它是由n 行列的復元素對稱方陣Z並且適合於條件
的所組成。

第三類典型域

第三種是n 行列的斜對稱方陣的雙曲空間,它是由n 行列的復元素斜對稱方陣Z並且適合於條件
的所組成。

第四類典型域

第四種可以稱為Lie球雙曲空間,它是由n(>2)維復元素矢量
並且適合於諸條件
的所組成。

相關介紹

這四種域的維數(複數維)各為
及n。最後一種,也可以表成為
實元素矩陣的雙曲空間。可遞的不可分解的囿對稱域僅有六種可能性,除以上的四種之外還有兩種,其一是16 維的某一種空間,另一是27維的某一種空間,從維數可以看出這兩種域是異常特殊的。

相關詞條

熱門詞條

聯絡我們