共性因子

共性因子(Common regression coefficient), 因子分析法中術語。變數(或事物)之間存在有共性因素,稱為公因子或共性因子。

基本介紹

  • 中文名:共性因子
  • 外文名:Common regression coefficient
  • 解釋變數(或事物)之間存在有共性因素
  • 別稱:公因子
  • 作用:社會研究
定義介紹
因子分析的方法約有10多種,如重心法、影像分析法,最大似然解、最小平方法阿爾發抽因法、拉奧典型抽因法等等。這些方法本質上大都屬近似方法,是以相關係數矩陣為基礎的,所不同的是相關係數矩陣對角線上的值,採用不同的共同性□2估值。在社會學研究中,因子分析常採用以主成分分析為基礎的反覆法。
主成分分析為基礎的反覆法 主成分分析的目的與因子分析不同,它不是抽取變數群中的共性因子,而是將變數□1,□2,…,□□進行線性組合,成為互為正交的新變數□1,□2,…,□□,以確保新變數具有最大的方差:
在求解中,正如因子分析一樣,要用到相關係數矩陣或協方差矩陣。其特徵值□1,□2,…,□□,正是□1,□2,…,□□的方差,對應的標準化特徵向量,正是方程中的係數□,□,…,□。如果□1>□2,…,□□,則對應的□1,□2,…,□□分別稱作第一主成分,第二主成分,……,直至第□主成分。如果信息無需保留100%,則可依次保留一部分主成分□1,□2,…,□□(□<□)。
當根據主成分分析,決定保留□個主成分之後,接著求□個特徵向量的行平方和,作為共同性□:
□並將此值代替相關數矩陣對角線之值,形成約相關矩陣。根據約相關係數矩陣,可進一步通過反覆求特徵值和特徵向量方法確定因子數目和因子的係數。
因子旋轉為了確定因子的實際內容,還須進一步旋轉因子,使每一個變數儘量只負荷於一個因子之上。這就是簡單的結構準則。常用的旋轉有直角旋轉法和斜角旋轉法。作直角旋轉時,各因素仍保持相對獨立。在作斜角旋轉時,允許因素間存在一定關係。
Q型因子分析 上述從變數群中提取共性因子的方法,又稱R型因子分析和R型主要成分分析。但如果研究個案群的共性因子,則稱Q型因子分析和Q型主成分分析。這時只須把調查的□個方案,當作□個變數,其分析方法與R型因子分析完全相同。
因子分析是社會研究的一種有力工具,但不能肯定地說一項研究中含有幾個因子,當研究中選擇的變數變化時,因子的數量也要變化。此外對每個因子實際含意的解釋也不是絕對的。

相關詞條

熱門詞條

聯絡我們